Zahra Taskeen, Abbas Saleem, Ou Junfei, Lim Tuti Mariana, Abbas Aumber
School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China.
School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China.
Materials (Basel). 2025 Jun 20;18(13):2929. doi: 10.3390/ma18132929.
Advanced oxidation processes offer bright potential for eliminating organic pollutants from wastewater, where the development of efficient catalysts revolves around deep understanding of the microstructure-property-performance relationship. In this study, we explore how microstructural engineering influences the catalytic performance of nanoporous copper (NPC) in degrading organic contaminants. By systematically tailoring the NPC microstructure, we achieve tunable three-dimensional porous architectures with nanoscale pores and macroscopic grains. This results in a homogeneous, bicontinuous pore-ligament network that is crucial for the oxidative degradation of the model pollutant methylene blue in the presence of hydrogen peroxide. The catalytic efficiency is assessed using ultraviolet-visible spectroscopy, which reveals first-order degradation kinetics with a rate constant = 44 × 10 min, a 30-fold improvement over bulk copper foil, and a fourfold increase over copper nanoparticles. The superior performance is attributed to the high surface area, abundant active sites, and multiscale porosity of NPC. Additionally, the high step-edge density, nanoscale curvature, and enhanced crystallinity contribute to the catalyst's remarkable stability and reactivity. This study not only provides insights into microstructure-property-performance relationships in nanoporous catalysts but also offers an effective strategy for designing efficient and scalable materials for wastewater treatment and environmental applications.
高级氧化工艺在从废水中去除有机污染物方面具有广阔的前景,高效催化剂的开发围绕着对微观结构-性能-性能关系的深入理解展开。在本研究中,我们探讨了微观结构工程如何影响纳米多孔铜(NPC)在降解有机污染物中的催化性能。通过系统地调整NPC的微观结构,我们实现了具有纳米级孔隙和宏观晶粒的可调三维多孔结构。这导致了一个均匀的、双连续的孔-韧带网络,这对于在过氧化氢存在下模型污染物亚甲基蓝的氧化降解至关重要。使用紫外-可见光谱法评估催化效率,结果显示一级降解动力学,速率常数k = 44×10⁻³ min⁻¹,比块状铜箔提高了30倍,比铜纳米颗粒提高了4倍。优异的性能归因于NPC的高表面积、丰富的活性位点和多尺度孔隙率。此外,高台阶边缘密度、纳米级曲率和增强的结晶度有助于催化剂具有出色的稳定性和反应活性。本研究不仅深入了解了纳米多孔催化剂中的微观结构-性能-性能关系,还为设计用于废水处理和环境应用的高效且可扩展的材料提供了有效策略。