Suppr超能文献

时间序列模型与算法的发展:低碳混凝土材料的徐变预测

Development of Time Series Models and Algorithms: Creep Prediction for Low-Carbon Concrete Materials.

作者信息

Zhou Zhengpeng, Li Houmin, Wu Keyang, Chen Jie, Yao Tianhao, Wu Yunlong

机构信息

School of Civil Engineering, Architecture and the Environment, Hubei University of Technology, Wuhan 430068, China.

Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China.

出版信息

Materials (Basel). 2025 Jul 3;18(13):3152. doi: 10.3390/ma18133152.

Abstract

In practical engineering applications, the use of low-carbon concrete materials is in line with the principles of sustainable development and helps to reduce the impact on the environment. Creep effects are particularly critical in the research on such materials. However, traditional characterization methods are time-consuming and often fail to account for the interactions of multiple factors. This study constructs a time-series database capturing the behavioral characteristics of low-carbon concrete materials over time. Three temporal prediction models-Artificial Neural Network (ANN), Random Forest (RF), and Long Short-Term Memory (LSTM) networks-were retrained for creep prediction. To address limitations in model architecture and algorithmic frameworks, an enhanced Adaptive Crowned Porcupine Optimization algorithm (ACCPO) was implemented. The improved performance of the ACCPO was validated using four diverse benchmark test functions. Post-optimization results showed remarkable improvements. For ANN, RF, and LSTM, single-metric accuracies increased by 20%, 19%, and 6%, reaching final values of 95.9%, 93.9%, and 97.8%, respectively. Comprehensive evaluation metrics revealed error reductions of 22.6%, 7.9%, and 8% across the respective models. These results confirm the rationality of the proposed temporal modeling framework and the effectiveness of the ACCPO algorithm. Among them, the ACCPO-LSTM time series model is the best choice.

摘要

在实际工程应用中,使用低碳混凝土材料符合可持续发展原则,有助于减少对环境的影响。在这类材料的研究中,徐变效应尤为关键。然而,传统的表征方法耗时且往往无法考虑多种因素的相互作用。本研究构建了一个时间序列数据库,以捕捉低碳混凝土材料随时间的行为特征。对三种时间预测模型——人工神经网络(ANN)、随机森林(RF)和长短期记忆(LSTM)网络——进行了重新训练以进行徐变预测。为了解决模型架构和算法框架的局限性,实施了一种改进的自适应带冠豪猪优化算法(ACCPO)。使用四个不同的基准测试函数验证了ACCPO的改进性能。优化后的结果显示出显著改善。对于ANN、RF和LSTM,单指标准确率分别提高了20%、19%和6%,最终值分别达到95.9%、93.9%和97.8%。综合评估指标显示,各模型的误差分别降低了22.6%、7.9%和8%。这些结果证实了所提出的时间建模框架的合理性以及ACCPO算法的有效性。其中,ACCPO-LSTM时间序列模型是最佳选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f143/12250879/44da12e40c92/materials-18-03152-g019.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验