Ali Wael, Otto Raphael, Lema Jimenez Ana Raquel, Lehmann Sebastian, Shin Eui-Young, Feng Ying, Jovic Milijana, Gaan Sabyasachi, Gutmann Jochen S, Nielsch Kornelius, Bahrami Amin, Mayer-Gall Thomas
Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany.
Institute of Physical Chemistry and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany.
Materials (Basel). 2025 Jul 7;18(13):3195. doi: 10.3390/ma18133195.
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic layer deposition (ALD) of ZnO with a phosphorus-silane-based flame retardant (DOPO-ETES). ALD allowed precise control of ZnO layer thickness (50, 84, and 199 nm), ensuring uniform coating. Thermal analysis (TGA) and microscale combustion calorimetry (MCC) revealed that ZnO altered the degradation pathway of PA6,6 through catalytic effects, promoting char formation and reducing heat release. The combination of ZnO and DOPO-ETES resulted in further reductions in heat release rates. However, direct flame tests showed that self-extinguishing behavior was not achieved, emphasizing the limitations related to the melting of PA6,6. TG-IR and cone calorimetry confirmed that ZnO coatings suppressed the release of smoke-related volatiles and incomplete combustion products. These findings highlight the potential of combining metal-based catalytic flame retardants like ZnO with phosphorus-based coatings to improve flame retardancy while addressing the specific challenges of polyamide textiles. This approach may also be adapted to other fabric types and integrated with additional flame retardants, broadening its relevance for textile applications.
聚酰胺6,6(PA6,6)织物因其高机械强度和化学稳定性而广泛应用于纺织品中。然而,其固有的可燃性以及在火灾中的熔融行为带来了重大的安全挑战。在本研究中,通过将氧化锌的原子层沉积(ALD)与一种基于磷硅烷的阻燃剂(DOPO-ETES)相结合,开发了一种双层阻燃系统。ALD能够精确控制氧化锌层的厚度(50、84和199纳米),确保涂层均匀。热分析(TGA)和微尺度燃烧量热法(MCC)表明,氧化锌通过催化作用改变了PA6,6的降解途径,促进了炭的形成并减少了热量释放。氧化锌和DOPO-ETES的组合进一步降低了热释放速率。然而,直接火焰测试表明并未实现自熄行为,这突出了与PA6,6熔融相关的局限性。TG-IR和锥形量热法证实,氧化锌涂层抑制了与烟雾相关的挥发性物质和不完全燃烧产物的释放。这些发现凸显了将氧化锌等金属基催化阻燃剂与磷基涂层相结合以提高阻燃性同时应对聚酰胺纺织品特定挑战的潜力。这种方法也可适用于其他织物类型,并与其他阻燃剂结合,扩大其在纺织品应用中的相关性。