Suppr超能文献

基于乳酸化和PAN凋亡特征的多组学整合在肺腺癌中的应用:预后分层与免疫反应

Multi-Omics Integration of Lactylation- and PANoptosis-Based Signatures in Lung Adenocarcinoma: Prognostic Stratification and Immune Response.

作者信息

Xu Zhenhao, Huang Yisha, Yu Xiuling, Xuan Jiajia, Liu Wanting

机构信息

MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.

出版信息

Int J Mol Sci. 2025 Jun 23;26(13):5999. doi: 10.3390/ijms26135999.

Abstract

Lactylation and PANoptosis are emerging modes of tumor progression regulation; however, their interplay and effect on the prognosis for lung adenocarcinoma (LUAD) remain unclear. This research analyzed both bulk and single-cell transcriptomic profiles of LUAD and identified 506 potential markers related to lactylation and PANoptosis. Employing 117 machine learning approaches and 5 LUAD datasets, lactylation and PANoptosis-related signatures (LAPRS) and further predictive nomograms were constructed with 85 prognostic genes. The performance of LAPRS was validated with multifaceted validation, including Kaplan-Meier analysis, time-dependent ROC curves and comparison with 55 existing LUAD models. LAPRS enabled the stratification of LUAD patients into high- and low-risk subgroups. Through additional investigation, high-risk individuals showed elevated genomic alterations, reduced immune infiltration, and poorer immunotherapy response, while low-risk individuals showed better drug sensitivity and a higher tumor mutation burden. Further analysis via 18 models and experimental validation revealed APOL1 as a poor prognostic factor, potentially interacting with the lactylation-related gene VIM through TNF signaling. This research clarifies the mechanistic roles of lactylation and PANoptosis in LUAD and proposes APOL1 as a novel prognostic marker, offering insights for therapeutic stratification.

摘要

乳酰化和PAN细胞焦亡是肿瘤进展调控的新兴模式;然而,它们在肺腺癌(LUAD)中的相互作用及其对预后的影响仍不清楚。本研究分析了LUAD的批量和单细胞转录组图谱,并鉴定了506个与乳酰化和PAN细胞焦亡相关的潜在标志物。利用117种机器学习方法和5个LUAD数据集,构建了与乳酰化和PAN细胞焦亡相关的特征(LAPRS)以及包含85个预后基因的进一步预测列线图。通过多方面验证,包括Kaplan-Meier分析、时间依赖性ROC曲线以及与55个现有的LUAD模型比较,验证了LAPRS的性能。LAPRS能够将LUAD患者分层为高风险和低风险亚组。通过进一步研究,高风险个体显示出更高的基因组改变、更低的免疫浸润和更差的免疫治疗反应,而低风险个体显示出更好的药物敏感性和更高的肿瘤突变负担。通过18个模型的进一步分析和实验验证表明,载脂蛋白L1(APOL1)是一个不良预后因素,可能通过肿瘤坏死因子信号通路与乳酰化相关基因波形蛋白(VIM)相互作用。本研究阐明了乳酰化和PAN细胞焦亡在LUAD中的机制作用,并提出APOL1作为一种新的预后标志物,为治疗分层提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验