Kehl Kenneth L
Dana-Farber Cancer Institute, Boston, MA.
JCO Clin Cancer Inform. 2025 May;9:e2500027. doi: 10.1200/CCI-25-00027. Epub 2025 May 19.
Artificial intelligence (AI) is increasingly being applied to clinical cancer research, driving precision oncology objectives by gathering clinical data at scales that were not previously possible. Although small, domain-specific models have been used toward this end for several years, general-purpose large language models (LLMs) now enable scalable data extraction and analysis without the need for large, labeled training data sets. These models support several applications, including building clinico-omic databases, matching patients to clinical trials, and developing multimodal foundation models that integrate text, imaging, and molecular data. LLMs can also streamline research workflows, from automating documentation to accelerating clinical decision making. However, data privacy, hallucination risks, computational costs, regulatory requirements, and validation standards remain significant considerations. Careful implementation of AI tools will therefore be an important task for cancer researchers in coming years.
人工智能(AI)越来越多地应用于临床癌症研究,通过以前所未有的规模收集临床数据来推动精准肿瘤学目标。尽管小型的特定领域模型已用于此目的数年,但通用大语言模型(LLM)现在能够实现可扩展的数据提取和分析,而无需大型的标记训练数据集。这些模型支持多种应用,包括建立临床组学数据库、为患者匹配临床试验,以及开发整合文本、成像和分子数据的多模态基础模型。LLM还可以简化研究工作流程,从自动化文档记录到加速临床决策。然而,数据隐私、幻觉风险、计算成本、监管要求和验证标准仍然是需要重点考虑的因素。因此,未来几年,谨慎实施人工智能工具将是癌症研究人员的一项重要任务。