Suppr超能文献

大语言模型在临床癌症研究中的应用。

Use of Large Language Models in Clinical Cancer Research.

作者信息

Kehl Kenneth L

机构信息

Dana-Farber Cancer Institute, Boston, MA.

出版信息

JCO Clin Cancer Inform. 2025 May;9:e2500027. doi: 10.1200/CCI-25-00027. Epub 2025 May 19.

Abstract

Artificial intelligence (AI) is increasingly being applied to clinical cancer research, driving precision oncology objectives by gathering clinical data at scales that were not previously possible. Although small, domain-specific models have been used toward this end for several years, general-purpose large language models (LLMs) now enable scalable data extraction and analysis without the need for large, labeled training data sets. These models support several applications, including building clinico-omic databases, matching patients to clinical trials, and developing multimodal foundation models that integrate text, imaging, and molecular data. LLMs can also streamline research workflows, from automating documentation to accelerating clinical decision making. However, data privacy, hallucination risks, computational costs, regulatory requirements, and validation standards remain significant considerations. Careful implementation of AI tools will therefore be an important task for cancer researchers in coming years.

摘要

人工智能(AI)越来越多地应用于临床癌症研究,通过以前所未有的规模收集临床数据来推动精准肿瘤学目标。尽管小型的特定领域模型已用于此目的数年,但通用大语言模型(LLM)现在能够实现可扩展的数据提取和分析,而无需大型的标记训练数据集。这些模型支持多种应用,包括建立临床组学数据库、为患者匹配临床试验,以及开发整合文本、成像和分子数据的多模态基础模型。LLM还可以简化研究工作流程,从自动化文档记录到加速临床决策。然而,数据隐私、幻觉风险、计算成本、监管要求和验证标准仍然是需要重点考虑的因素。因此,未来几年,谨慎实施人工智能工具将是癌症研究人员的一项重要任务。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验