Almishal Saeed S I, Kezer Pat, Sivak Jacob T, Iwabuchi Yasuyuki, Ayyagari Sai Venkata Gayathri, Sarker Saugata, Furst Matthew, Bejger Gerald, Yang Billy, Gelin Simon, Alem Nasim, Dabo Ismaila, Rost Christina M, Sinnott Susan B, Crespi Vincent, Gopalan Venkatraman, Engel-Herbert Roman, Heron John T, Maria Jon-Paul
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Adv Sci (Weinh). 2025 Jul 12:e09868. doi: 10.1002/advs.202509868.
This manuscript presents a working model linking chemical disorder and transport properties in correlated-electron perovskites with high-entropy formulations and a framework to actively design them. This work demonstrates this new learning in epitaxial Sr(Ti,Cr,Nb,Mo,W)O thin films that exhibit exceptional crystalline fidelity despite a diverse chemical formulation where most B-site species are highly misfit with respect to valence and radius. X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy confirm a unique combination of chemical disorder and structural perfection in thin and thick epitaxial layers. This combination produces an optical transparency window that surpasses that of the constituent end-members in the UV and IR, while maintaining relatively low electrical resistivity. This work addresses the computational challenges of modeling such systems and investigate short-range ordering using cluster expansion. These results showcase that unusual d-metal combinations access an expanded property design space that is predictable using end-member characteristics and their interactions - though unavailable to them - thus offering performance advances in optical, high-frequency, spintronic, and quantum devices.
本手稿提出了一个工作模型,该模型将具有高熵配方的关联电子钙钛矿中的化学无序与输运性质联系起来,并提供了一个积极设计它们的框架。这项工作在外延Sr(Ti,Cr,Nb,Mo,W)O薄膜中展示了这种新认知,尽管其化学配方多样,且大多数B位物种在价态和半径方面高度不匹配,但这些薄膜仍具有出色的晶体保真度。X射线衍射、X射线光电子能谱和透射电子显微镜证实了薄外延层和厚外延层中化学无序与结构完美的独特组合。这种组合产生了一个光学透明窗口,在紫外和红外波段超过了组成端元的窗口,同时保持了相对较低的电阻率。这项工作解决了对此类系统进行建模的计算挑战,并使用团簇展开研究短程有序。这些结果表明,不寻常的d金属组合进入了一个扩展的性能设计空间,该空间可通过端元特性及其相互作用来预测——尽管单个端元无法做到这一点——从而为光学、高频、自旋电子和量子器件带来性能提升。