Suppr超能文献

SCassist:一种用于单细胞分析的基于人工智能的工作流程助手。

SCassist: an AI based workflow assistant for single-cell analysis.

作者信息

Nagarajan Vijayaraj, Shi Guangpu, Arunkumar Samyuktha, Liu Chunhong, Gopalakrishnan Jaanam, Nath Pulak R, Jang Junseok, Caspi Rachel R

机构信息

Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, United States.

Neuro-Immune Regulome Unit (Alumni), National Eye Institute, NIH, Bethesda, MD 20892, United States.

出版信息

Bioinformatics. 2025 Aug 2;41(8). doi: 10.1093/bioinformatics/btaf402.

Abstract

SUMMARY

Single-cell RNA sequencing (scRNA-seq) data analysis often involves complex iterative workflow, requiring significant expertise and time. To navigate this complexity, we have developed SCassist, an R package that leverages the power of the large language models (LLM's) to guide and enhance scRNA-seq analysis. SCassist integrates LLM's into key workflow steps, to analyze user data and provide relevant recommendations for filtering, normalization and clustering parameters. It also provides LLM guided insightful interpretations of variable features and principal components, along with cell type annotations and enrichment analysis. SCassist provides intelligent assistance using popular LLM's like Google's Gemini, OpenAI's GPT and Meta's Llama3, making scRNA-seq analysis accessible to researchers at all levels.

AVAILABILITY AND IMPLEMENTATION

The SCassist package, along with the detailed tutorials, is available at GitHub. https://github.com/NIH-NEI/SCassist.

摘要

摘要

单细胞RNA测序(scRNA-seq)数据分析通常涉及复杂的迭代工作流程,需要大量专业知识和时间。为应对这种复杂性,我们开发了SCassist,这是一个R包,它利用大语言模型(LLM)的能力来指导和增强scRNA-seq分析。SCassist将LLM集成到关键工作流程步骤中,以分析用户数据,并为过滤、归一化和聚类参数提供相关建议。它还提供LLM指导的对可变特征和主成分的深刻解释,以及细胞类型注释和富集分析。SCassist使用谷歌的Gemini、OpenAI的GPT和Meta的Llama3等流行的LLM提供智能辅助,使各级研究人员都能进行scRNA-seq分析。

可用性和实现方式

SCassist包以及详细教程可在GitHub上获取。https://github.com/NIH-NEI/SCassist

相似文献

本文引用的文献

2
Transformers in single-cell omics: a review and new perspectives.单细胞组学中的转换器:综述与新视角。
Nat Methods. 2024 Aug;21(8):1430-1443. doi: 10.1038/s41592-024-02353-z. Epub 2024 Aug 9.
4
Large-scale foundation model on single-cell transcriptomics.单细胞转录组学的大规模基础模型。
Nat Methods. 2024 Aug;21(8):1481-1491. doi: 10.1038/s41592-024-02305-7. Epub 2024 Jun 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验