Suppr超能文献

MuDCoD:单细胞 RNA 测序中个性化动态基因网络的多主体社区检测。

MuDCoD: multi-subject community detection in personalized dynamic gene networks from single-cell RNA sequencing.

机构信息

Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, United States.

Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Turkey.

出版信息

Bioinformatics. 2023 Oct 3;39(10). doi: 10.1093/bioinformatics/btad592.

Abstract

MOTIVATION

With the wide availability of single-cell RNA-seq (scRNA-seq) technology, population-scale scRNA-seq datasets across multiple individuals and time points are emerging. While the initial investigations of these datasets tend to focus on standard analysis of clustering and differential expression, leveraging the power of scRNA-seq data at the personalized dynamic gene co-expression network level has the potential to unlock subject and/or time-specific network-level variation, which is critical for understanding phenotypic differences. Community detection from co-expression networks of multiple time points or conditions has been well-studied; however, none of the existing settings included networks from multiple subjects and multiple time points simultaneously. To address this, we develop Multi-subject Dynamic Community Detection (MuDCoD) for multi-subject community detection in personalized dynamic gene networks from scRNA-seq. MuDCoD builds on the spectral clustering framework and promotes information sharing among the networks of the subjects as well as networks at different time points. It clusters genes in the personalized dynamic gene networks and reveals gene communities that are variable or shared not only across time but also among subjects.

RESULTS

Evaluation and benchmarking of MuDCoD against existing approaches reveal that MuDCoD effectively leverages apparent shared signals among networks of the subjects at individual time points, and performs robustly when there is no or little information sharing among the networks. Applications to population-scale scRNA-seq datasets of human-induced pluripotent stem cells during dopaminergic neuron differentiation and CD4+ T cell activation indicate that MuDCoD enables robust inference for identifying time-varying personalized gene modules. Our results illustrate how personalized dynamic community detection can aid in the exploration of subject-specific biological processes that vary across time.

AVAILABILITY AND IMPLEMENTATION

MuDCoD is publicly available at https://github.com/bo1929/MuDCoD as a Python package. Implementation includes simulation and real-data experiments together with extensive documentation.

摘要

动机

随着单细胞 RNA 测序(scRNA-seq)技术的广泛应用,越来越多的多个人和多个时间点的群体规模 scRNA-seq 数据集正在出现。虽然这些数据集的初步研究往往侧重于聚类和差异表达的标准分析,但利用 scRNA-seq 数据在个性化动态基因共表达网络层面的强大功能,有可能揭示主体和/或时间特定的网络层面变化,这对于理解表型差异至关重要。来自多个时间点或条件的共表达网络的社区检测已经得到了很好的研究;然而,现有的设置都没有同时包含来自多个主体和多个时间点的网络。为了解决这个问题,我们开发了用于从 scRNA-seq 中的个性化动态基因网络中进行多主体社区检测的多主体动态社区检测(MuDCoD)。MuDCoD 基于谱聚类框架,并促进了主体之间的网络以及不同时间点的网络之间的信息共享。它对个性化动态基因网络中的基因进行聚类,并揭示不仅在时间上而且在主体之间都具有可变性或共享性的基因社区。

结果

MuDCoD 与现有方法的评估和基准测试表明,MuDCoD有效地利用了主体在各个时间点的网络之间明显的共享信号,并且在网络之间没有或很少信息共享的情况下表现稳健。对人类诱导多能干细胞在多巴胺能神经元分化和 CD4+T 细胞激活过程中的群体规模 scRNA-seq 数据集的应用表明,MuDCoD 能够稳健地识别随时间变化的个性化基因模块。我们的结果说明了个性化动态社区检测如何有助于探索随时间变化的主体特异性生物过程。

可用性和实现

MuDCoD 可在 https://github.com/bo1929/MuDCoD 上作为 Python 包公开获取。实现包括模拟和真实数据实验以及广泛的文档。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61db/10564618/ea1efcbf12c8/btad592f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验