Suppr超能文献

IGCLAPS:一种用于单细胞RNA测序数据分析的具有自适应正样本采样的可解释图对比学习方法。

IGCLAPS: an interpretable graph contrastive learning method with adaptive positive sampling for scRNA-seq data analysis.

作者信息

Zheng Weihua, Min Wenwen, Wang Shunfang

机构信息

School of Information Science and Engineering, Yunnan University, Kunming, 650504, China.

出版信息

Bioinformatics. 2025 Jul 21. doi: 10.1093/bioinformatics/btaf411.

Abstract

MOTIVATION

Single-cell RNA sequencing (scRNA-seq) technology enables biological research at single-cell resolution. Cell clustering is a crucial task in scRNA-seq data analysis since it provides insights into cell heterogeneity. Although existing methods have made significant progress in this task, it remains challenging to fully utilize the relationship among cells.

RESULTS

We propose Interpretable Graph Contrastive Learning method with Adaptive Positive Sampling (IGCLAPS), a novel end-to-end graph contrastive clustering method for scRNA-seq data analysis. Specifically, IGCLAPS learns low-dimensional embeddings with graph transformer, based on which a dual-head graph contrastive learning module is used to perform dimension reduction and cell clustering simultaneously. Besides, as accurate definition of positive sample pairs is crucial in contrastive learning, we devise an adaptive positive sampling module, which dynamically identifies true positive sample pairs based on both expression similarity and soft cluster labels generated by the contrastive learning module. Extensive experiments on a series of real datasets including cell clustering, visualization and differential expression analysis demonstrate that IGCLAPS can effectively enhance clustering performance and generate interpretable gene expression patterns of scRNA-seq data.

AVAILABILITY

The source codes of IGCLAPS are available at https://github.com/ZhengWeihuaYNU/IGCLAPS.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

单细胞RNA测序(scRNA-seq)技术能够在单细胞分辨率下进行生物学研究。细胞聚类是scRNA-seq数据分析中的一项关键任务,因为它能提供对细胞异质性的见解。尽管现有方法在这项任务上取得了显著进展,但充分利用细胞间的关系仍然具有挑战性。

结果

我们提出了具有自适应正样本采样的可解释图对比学习方法(IGCLAPS),这是一种用于scRNA-seq数据分析的新型端到端图对比聚类方法。具体而言,IGCLAPS使用图变换器学习低维嵌入,在此基础上,一个双头图对比学习模块用于同时进行降维和细胞聚类。此外,由于正样本对的准确定义在对比学习中至关重要,我们设计了一个自适应正样本采样模块,该模块基于表达相似性和对比学习模块生成的软聚类标签动态识别真正的正样本对。在一系列真实数据集上进行的包括细胞聚类、可视化和差异表达分析在内的大量实验表明,IGCLAPS可以有效提高聚类性能,并生成可解释的scRNA-seq数据基因表达模式。

可用性

IGCLAPS的源代码可在https://github.com/ZhengWeihuaYNU/IGCLAPS获取。

补充信息

补充数据可在《生物信息学》在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验