Suppr超能文献

DSMT-Net:用于半监督医学图像分割的具有像素级伪标签优化的双学生均值教师网络。

DSMT-Net: Dual-student mean teacher network with pixel-level pseudo-label optimization for semi-supervised medical image segmentation.

作者信息

Su Jun, Sun Wenlong, Adamyk Bogdan

机构信息

School of Computer Science, Hubei University of Technology, Wuhan, 430068, China.

Aston Business School, Aston University, Birmingham, B4 7ET, UK.

出版信息

Comput Biol Chem. 2025 Dec;119:108579. doi: 10.1016/j.compbiolchem.2025.108579. Epub 2025 Jul 9.

Abstract

Medical imaging technologies, as essential tools for the precise visualization of internal anatomical structures, play a crucial role in early disease detection and ensuring accurate diagnosis. Recently, semi-supervised learning has become a key strategy in medical image segmentation to reduce reliance on scarce annotated data. However, existing frameworks, such as the Mean Teacher (MT), often suffer from low-quality pseudo-labels and limited robustness due to structural homogeneity and noise amplification in complex medical scenarios. To address these issues, this study presents a novel Dual-Student Mean Teacher Network (DSMT-Net), which enhances performance through a collaborative complementary architecture and pixel-level pseudo-label optimization. First, DSMT-Net combines U-Net and Mamba-UNet as dual students, utilizing the former's local boundary accuracy and the latter's global dependency modeling via a state-space model. Second, a pixel-level pseudo-label enhancement mechanism is introduced, combining pixel-level similarity analysis, adaptive confidence threshold setting, and iterative propagation to improve pseudo-label quality while maintaining structural consistency. Third, a self-supervised contrastive loss is adopted to enforce feature consistency between the dual students, alleviating noise propagation and improving the efficiency of unsupervised learning. Comprehensive evaluations on the ACDC and LA datasets confirm the effectiveness of DSMT-Net, highlighting its substantial capability to lower annotation requirements in medical image segmentation tasks. This provides a robust and scalable framework for semi-supervised learning in medical image segmentation, advancing clinical diagnostic efficiency and accuracy. Our code is available at https://github.com/sunwenlong1/DSMT.git.

摘要

医学成像技术作为精确可视化内部解剖结构的重要工具,在疾病早期检测和确保准确诊断方面发挥着关键作用。最近,半监督学习已成为医学图像分割中的关键策略,以减少对稀缺标注数据的依赖。然而,现有的框架,如均值教师(MT),由于复杂医学场景中的结构同质性和噪声放大,往往存在伪标签质量低和鲁棒性有限的问题。为了解决这些问题,本研究提出了一种新颖的双学生均值教师网络(DSMT-Net),它通过协作互补架构和像素级伪标签优化来提高性能。首先,DSMT-Net将U-Net和Mamba-UNet组合为双学生,利用前者的局部边界精度和后者通过状态空间模型进行的全局依赖性建模。其次,引入了一种像素级伪标签增强机制,结合像素级相似性分析、自适应置信度阈值设置和迭代传播,以提高伪标签质量,同时保持结构一致性。第三,采用自监督对比损失来强制双学生之间的特征一致性,减轻噪声传播并提高无监督学习的效率。在ACDC和LA数据集上的综合评估证实了DSMT-Net的有效性,突出了其在医学图像分割任务中大幅降低标注要求的能力。这为医学图像分割中的半监督学习提供了一个强大且可扩展 的框架,提高了临床诊断效率和准确性。我们的代码可在https://github.com/sunwenlong1/DSMT.git获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验