Suppr超能文献

IHE-Net:用于半监督医学图像分割的隐藏特征差异融合与三重一致性训练

IHE-Net:Hidden feature discrepancy fusion and triple consistency training for semi-supervised medical image segmentation.

作者信息

Ju Mengyi, Wang Bing, Zhao Zutong, Zhang Shiyin, Yang Shuo, Wei Zhihong

机构信息

College of Mathematics and Information Science, Hebei University, Wusi Road 180, Baoding, 071000, Hebei, China.

College of Mathematics and Information Science, Hebei University, Wusi Road 180, Baoding, 071000, Hebei, China; Hebei Key Laboratory of Machine Learning and Computational Intelligence, Hebei University, Wusi Road 180, Baoding, 071000, Hebei, China.

出版信息

Artif Intell Med. 2025 Oct;168:103229. doi: 10.1016/j.artmed.2025.103229. Epub 2025 Jul 31.

Abstract

Teacher-Student (TS) networks have become the mainstream frameworks of semi-supervised deep learning, and are widely used in medical image segmentation. However, traditional TSs based on single or homogeneous encoders often struggle to capture the rich semantic details required for complex, fine-grained tasks. To address this, we propose a novel semi-supervised medical image segmentation framework (IHE-Net), which makes good use of the feature discrepancies of two heterogeneous encoders to improve segmentation performance. The two encoders are instantiated by different learning paradigm networks, namely CNN and Transformer/Mamba, respectively, to extract richer and more robust context representations from unlabeled data. On this basis, we propose a simple yet powerful multi-level feature discrepancy fusion module (MFDF), which effectively integrates different modal features and their discrepancies from two heterogeneous encoders. This design enhances the representational capacity of the model through efficient fusion without introducing additional computational overhead. Furthermore, we introduce a triple consistency learning strategy to improve predictive stability by setting dual decoders and adding mixed output consistency. Extensive experimental results on three skin lesion segmentation datasets, ISIC2017, ISIC2018, and PH2, demonstrate the superiority of our framework. Ablation studies further validate the rationale and effectiveness of the proposed method. Code is available at: https://github.com/joey-AI-medical-learning/IHE-Net.

摘要

师生(TS)网络已成为半监督深度学习的主流框架,并广泛应用于医学图像分割。然而,基于单个或同类编码器的传统TS往往难以捕捉复杂的细粒度任务所需的丰富语义细节。为了解决这个问题,我们提出了一种新颖的半监督医学图像分割框架(IHE-Net),它充分利用了两个异构编码器的特征差异来提高分割性能。这两个编码器分别由不同的学习范式网络实例化,即CNN和Transformer/Mamba,以便从未标记数据中提取更丰富、更强大的上下文表示。在此基础上,我们提出了一个简单而强大的多级特征差异融合模块(MFDF),它有效地整合了来自两个异构编码器的不同模态特征及其差异。这种设计通过高效融合增强了模型的表征能力,而无需引入额外的计算开销。此外,我们引入了一种三重一致性学习策略,通过设置双解码器并添加混合输出一致性来提高预测稳定性。在三个皮肤病变分割数据集ISIC2017、ISIC2018和PH2上的大量实验结果证明了我们框架的优越性。消融研究进一步验证了所提方法的原理和有效性。代码可在以下网址获取:https://github.com/joey-AI-medical-learning/IHE-Net。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验