Suppr超能文献

通过自动化和机器智能对化学反应进行高度并行优化。

Highly parallel optimisation of chemical reactions through automation and machine intelligence.

作者信息

Sin Joshua W, Chau Siu Lun, Burwood Ryan P, Püntener Kurt, Bigler Raphael, Schwaller Philippe

机构信息

Process Chemistry & Catalysis, Synthetic Molecules Technical Development, F. Hoffmann-La Roche AG, Basel, Switzerland.

Laboratory of Artificial Chemical Intelligence (LIAC), EPFL, Lausanne, Switzerland.

出版信息

Nat Commun. 2025 Jul 12;16(1):6464. doi: 10.1038/s41467-025-61803-0.

Abstract

We report the development and application of a scalable machine learning (ML) framework (Minerva) for highly parallel multi-objective reaction optimisation with automated high-throughput experimentation (HTE). Minerva demonstrates robust performance with experimental data-derived benchmarks, efficiently handling large parallel batches, high-dimensional search spaces, reaction noise, and batch constraints present in real-world laboratories. Validating our approach experimentally, we apply Minerva in a 96-well HTE reaction optimisation campaign for a nickel-catalysed Suzuki reaction, tackling challenges in non-precious metal catalysis. Our approach effectively navigates the complex reaction landscape with unexpected chemical reactivity, outperforming traditional experimentalist-driven methods. Extending to industrial applications, we deploy Minerva in pharmaceutical process development, successfully optimising two active pharmaceutical ingredient (API) syntheses. For both a Ni-catalysed Suzuki coupling and a Pd-catalysed Buchwald-Hartwig reaction, our approach identifies multiple conditions achieving >95 area percent (AP) yield and selectivity, directly translating to improved process conditions at scale.

摘要

我们报告了一种可扩展的机器学习(ML)框架(密涅瓦)的开发与应用,该框架用于通过自动化高通量实验(HTE)进行高度并行的多目标反应优化。密涅瓦在基于实验数据的基准测试中展现出强大的性能,能够有效处理大型并行批次、高维搜索空间、反应噪声以及现实实验室中存在的批次约束。通过实验验证我们的方法,我们将密涅瓦应用于镍催化的铃木反应的96孔HTE反应优化实验中,应对非贵金属催化方面的挑战。我们的方法有效地应对了具有意外化学反应性的复杂反应态势,优于传统的实验人员主导的方法。扩展到工业应用中,我们将密涅瓦应用于制药工艺开发,成功优化了两种活性药物成分(API)的合成。对于镍催化的铃木偶联反应和钯催化的布赫瓦尔德-哈特维希反应,我们的方法都确定了多种条件,实现了>95面积百分比(AP)的产率和选择性,直接转化为大规模的改进工艺条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a7/12255721/3eeca0ae0c52/41467_2025_61803_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验