Mahmoud Ahmed Adly, Rabie Abdalla, Dass Sarat Chandra, Alqasem Ohud A, Mekiso Getachew Tekle, Hussam Eslam, Gemeay Ahmed M
Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
School of Mathematical and Computer Sciences, Heriot-Watt University Malaysia, 62200, Putrajaya, Malaysia.
Sci Rep. 2025 Jul 12;15(1):25229. doi: 10.1038/s41598-025-07227-8.
The maximum likelihood inference framework for delay differential equation models in the multivariate settings is developed. The number of delay parameters is assumed to be one or more. This study does not make any restrictive assumptions on the form of the underlying delay differential equations which was one of the limitations of some of the previous work. Thus, the maximum likelihood inference framework can be applied to general delay differential equation models with multiple delay parameters. To obtain the maximum likelihood estimator and estimate of the information matrix, two numerical algorithms are developed: (i) the adaptive grid and (ii) the gradient descent algorithms. Two examples of multivariate delay differential equation models related to the epidemic and pharmacokinetic models, respectively, are presented in this paper. For the unknown parameters, standard errors and confidence intervals are constructed, and formulas and techniques for producing the information matrix are developed. The code and computations are developed with the help of the mathematical software MATLAB.
开发了多元环境下延迟微分方程模型的最大似然推断框架。假设延迟参数的数量为一个或多个。本研究对基础延迟微分方程的形式未作任何限制性假设,而这是一些先前工作的局限性之一。因此,最大似然推断框架可应用于具有多个延迟参数的一般延迟微分方程模型。为了获得最大似然估计器和信息矩阵的估计值,开发了两种数值算法:(i)自适应网格算法和(ii)梯度下降算法。本文给出了分别与流行病模型和药代动力学模型相关的两个多元延迟微分方程模型示例。对于未知参数,构建了标准误差和置信区间,并开发了生成信息矩阵的公式和技术。代码和计算是在数学软件MATLAB的帮助下完成的。