Liang Hua, Wu Hulin
Hua Liang (E-mail:
J Am Stat Assoc. 2008 Dec 1;103(484):1570-1583. doi: 10.1198/016214508000000797.
Differential equation (DE) models are widely used in many scientific fields that include engineering, physics and biomedical sciences. The so-called "forward problem", the problem of simulations and predictions of state variables for given parameter values in the DE models, has been extensively studied by mathematicians, physicists, engineers and other scientists. However, the "inverse problem", the problem of parameter estimation based on the measurements of output variables, has not been well explored using modern statistical methods, although some least squares-based approaches have been proposed and studied. In this paper, we propose parameter estimation methods for ordinary differential equation models (ODE) based on the local smoothing approach and a pseudo-least squares (PsLS) principle under a framework of measurement error in regression models. The asymptotic properties of the proposed PsLS estimator are established. We also compare the PsLS method to the corresponding SIMEX method and evaluate their finite sample performances via simulation studies. We illustrate the proposed approach using an application example from an HIV dynamic study.
微分方程(DE)模型广泛应用于包括工程、物理和生物医学科学在内的许多科学领域。所谓的“正向问题”,即在DE模型中针对给定参数值模拟和预测状态变量的问题,已被数学家、物理学家、工程师和其他科学家广泛研究。然而,“反向问题”,即基于输出变量测量进行参数估计的问题,尽管已经提出并研究了一些基于最小二乘法的方法,但尚未使用现代统计方法进行充分探索。在本文中,我们在回归模型测量误差的框架下,基于局部平滑方法和伪最小二乘法(PsLS)原理,提出了常微分方程模型(ODE)的参数估计方法。建立了所提出的PsLS估计器的渐近性质。我们还将PsLS方法与相应的SIMEX方法进行比较,并通过模拟研究评估它们的有限样本性能。我们使用来自HIV动态研究的应用示例来说明所提出的方法。