Abbas Amir, Kiran Laraib, Ghachem Kaouther, Abdennaji Tarek Salem, Alshammari Badr M, Kolsi Lioua, Khan Ilyas, Khan M S
Department of Mathematics, Faculty of Natural Sciences and Technology, Baba Guru Nanak University, Nankana Sahib, 39100, Pakistan.
Department of Chemistry, University of Agriculture, Faisalabad, 39000, Pakistan.
Sci Rep. 2025 Jul 12;15(1):25209. doi: 10.1038/s41598-025-10057-3.
The current study explores the impact of variable heat rise/fall on the heat and mass transfer through Maxwell Ternary Nanofluid based on Copper-Alumina-Titanium Dioxide/Water. Electrically conducting non-Newtonian Maxwell fluid flowing on a moving thin needle embedded in porous media is considered. Effects of chemical reaction parameters along with the applied magnetic field in the normal direction of the flow of fluid are incorporated. The proposed mechanism in the form of differential equations is solved using the MATLAB bvp4c solver. This study can be utilized in energy systems like nuclear and chemical reactors, where managing high heat fluxes in porous environments is essential. The unique behavior of ternary nanofluids under magnetic fields improves cooling efficiency and system stability. The computed results show that the increase in the Maxwell fluid parameter causes a reduction in the velocity field and an augmentation of temperature and mass concentration. This is due to an increase in thermal relaxation time, which takes time for the adjustment of the fluid. It is concluded that an increase in the Lorentz force due to a rising magnetic field parameter results in a temperature increase and a decrease in the fluid's velocity. The variable heat rise and fall parameter leads to an increase in the fluid's temperature. An increase in the nanoparticle volume fraction results in elevated temperature and concentration distributions. Moreover, the Nusselt number increases with higher Prandtl numbers, while the Sherwood number decreases as the chemical reaction parameter grows. The main outcome of this current study for the case of the ternary nanofluid is that the overall thermal performance of the fluid is improved, which serves the purpose of the proposed study.
当前的研究探讨了基于铜 - 氧化铝 - 二氧化钛/水的麦克斯韦三元纳米流体中可变的热升/降对传热和传质的影响。考虑了在嵌入多孔介质的移动细针上流动的导电非牛顿麦克斯韦流体。纳入了化学反应参数以及沿流体流动法线方向施加的磁场的影响。使用MATLAB bvp4c求解器求解以微分方程形式提出的机制。这项研究可用于核能和化学反应器等能源系统,在这些系统中,管理多孔环境中的高热通量至关重要。三元纳米流体在磁场下的独特行为提高了冷却效率和系统稳定性。计算结果表明,麦克斯韦流体参数的增加导致速度场减小,温度和质量浓度增加。这是由于热弛豫时间增加,流体需要时间进行调整。得出的结论是,由于磁场参数增加导致洛伦兹力增加,从而导致温度升高和流体速度降低。可变的热升和降参数导致流体温度升高。纳米颗粒体积分数的增加导致温度和浓度分布升高。此外,努塞尔数随着普朗特数的增加而增加,而舍伍德数随着化学反应参数的增加而减小。对于三元纳米流体的这种情况,当前研究的主要结果是流体的整体热性能得到改善,这符合所提出研究的目的。