文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多组学数据与肠道微生物群组成的综合分析揭示了预后亚型,并使用机器学习预测结直肠癌的免疫治疗反应。

Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal cancer using machine learning.

作者信息

Wang Jun, Cong Yuan, Tang Bo, Liu Juan, Pu Ke

机构信息

Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.

School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Sci Rep. 2025 Jul 12;15(1):25268. doi: 10.1038/s41598-025-08915-1.


DOI:10.1038/s41598-025-08915-1
PMID:40652009
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12255678/
Abstract

Colorectal cancer (CRC) exhibits substantial heterogeneity in molecular subtypes and clinical outcomes. We performed an integrative analysis of multi-omics data from 274 CRC patients to investigate the impact of gut microbiota composition on prognosis, identify novel subtypes, and develop a machine learning-based prognostic model. Our microbiome analysis revealed significant differences between CRC and normal tissues. Multi-omics clustering identified two major CRC subtypes, CS1 and CS2, with distinct molecular characteristics and survival outcomes. We developed the Multi-Omics Integrative Clustering and Machine Learning Score (MCMLS) model, which demonstrated strong prognostic value in predicting patient survival and outperformed existing models. The MCMLS low-score group exhibited higher immune cell infiltration, increased metabolic pathway activity, and potentially better immunotherapy response. In contrast, the MCMLS high-score group showed higher mutation burden, fibroblast infiltration, and enrichment of cell adhesion and migration pathways. Bacterial analysis revealed differentially abundant bacteria associated with prognosis. Importantly, MCMLS consistently predicted immunotherapy response across six independent datasets. Our findings highlight the complex interplay between the gut microbiome, tumor microenvironment, and immune landscape in CRC, providing valuable insights for improving patient stratification and personalized treatment strategies.

摘要

结直肠癌(CRC)在分子亚型和临床结局方面表现出显著的异质性。我们对274例CRC患者的多组学数据进行了综合分析,以研究肠道微生物群组成对预后的影响,识别新的亚型,并开发基于机器学习的预后模型。我们的微生物组分析揭示了CRC组织与正常组织之间的显著差异。多组学聚类确定了两种主要的CRC亚型,即CS1和CS2,它们具有不同的分子特征和生存结局。我们开发了多组学综合聚类和机器学习评分(MCMLS)模型,该模型在预测患者生存方面显示出强大的预后价值,并且优于现有模型。MCMLS低分患者组表现出更高的免疫细胞浸润、增加的代谢途径活性以及潜在的更好的免疫治疗反应。相比之下,MCMLS高分患者组显示出更高的突变负担、成纤维细胞浸润以及细胞黏附和迁移途径的富集。细菌分析揭示了与预后相关的差异丰度细菌。重要的是,MCMLS在六个独立数据集中均一致地预测了免疫治疗反应。我们的研究结果突出了CRC中肠道微生物组、肿瘤微环境和免疫格局之间的复杂相互作用,为改善患者分层和个性化治疗策略提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/29d3304f32f1/41598_2025_8915_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/3ec55fc6672a/41598_2025_8915_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/9719b087ba24/41598_2025_8915_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/d87cc77f008d/41598_2025_8915_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/1b9e3ae5f63a/41598_2025_8915_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/668893ba32e2/41598_2025_8915_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/a8b49bd253ee/41598_2025_8915_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/d563d3d737f0/41598_2025_8915_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/36767f4fe94f/41598_2025_8915_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/7043845c7609/41598_2025_8915_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/29d3304f32f1/41598_2025_8915_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/3ec55fc6672a/41598_2025_8915_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/9719b087ba24/41598_2025_8915_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/d87cc77f008d/41598_2025_8915_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/1b9e3ae5f63a/41598_2025_8915_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/668893ba32e2/41598_2025_8915_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/a8b49bd253ee/41598_2025_8915_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/d563d3d737f0/41598_2025_8915_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/36767f4fe94f/41598_2025_8915_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/7043845c7609/41598_2025_8915_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d0/12255678/29d3304f32f1/41598_2025_8915_Fig5_HTML.jpg

相似文献

[1]
Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal cancer using machine learning.

Sci Rep. 2025-7-12

[2]
Multi-omics-based subtyping of melanoma suggests distinct immune and targeted therapy strategies.

Front Immunol. 2025-6-12

[3]
Integrated multi-omics analysis reveals the functional signature of microbes and metabolomics in pre-diabetes individuals.

Microbiol Spectr. 2025-7

[4]
Identification and predictive machine learning models construction of gut microbiota associated with lymph node metastasis in colorectal cancer.

mSystems. 2025-7-8

[5]
Multi-omics analysis reveals the role of ribosome biogenesis in malignant clear cell renal cell carcinoma and the development of a machine learning-based prognostic model.

Front Immunol. 2025-6-26

[6]
NME4: A novel metabolic-associated biomarker for prognosis prediction and immunotherapy response evaluation in clear cell renal cell carcinoma.

Mol Immunol. 2025-8

[7]
Predicting prognosis and immunotherapy response of ferroptosis-related genes in colorectal cancer.

Eur J Med Res. 2025-6-23

[8]
Computed tomography-based radiomics predicts prognostic and treatment-related levels of immune infiltration in the immune microenvironment of clear cell renal cell carcinoma.

BMC Med Imaging. 2025-7-1

[9]
Comprehensive multi-omics and machine learning framework for glioma subtyping and precision therapeutics.

Sci Rep. 2025-7-10

[10]
Predicting Immunotherapy Efficacy with Machine Learning in Gastrointestinal Cancers: A Systematic Review and Meta-Analysis.

Int J Mol Sci. 2025-6-20

本文引用的文献

[1]
Multi-omics data integration identifies novel biomarkers and patient subgroups in inflammatory bowel disease.

J Crohns Colitis. 2025-1-11

[2]
Microbiome Differences in Colorectal Cancer Patients and Healthy Individuals: Implications for Vaccine Antigen Discovery.

Immunotargets Ther. 2024-12-13

[3]
Exploring the gut microbiome's role in colorectal cancer: diagnostic and prognostic implications.

Front Immunol. 2024

[4]
KEGG: biological systems database as a model of the real world.

Nucleic Acids Res. 2025-1-6

[5]
Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy.

Front Immunol. 2024

[6]
Prognostic genome and transcriptome signatures in colorectal cancers.

Nature. 2024-9

[7]
Pan-cancer atlas of tumor-resident microbiome, immunity and prognosis.

Cancer Lett. 2024-8-28

[8]
Nontoxigenic Bacteroides fragilis: A double-edged sword.

Microbiol Res. 2024-9

[9]
Integration of Clinical Trial Spatial Multiomics Analysis and Virtual Clinical Trials Enables Immunotherapy Response Prediction and Biomarker Discovery.

Cancer Res. 2024-8-15

[10]
Comprehensive Proteogenomic Profiling Reveals the Molecular Characteristics of Colorectal Cancer at Distinct Stages of Progression.

Cancer Res. 2024-9-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索