Preto António José, Chanana Shaurya, Ence Daniel, Healy Matthew D, Domingo-Fernández Daniel, West Kiana A
Enveda, Boulder, CO 80301, United States.
J Crohns Colitis. 2025 Jan 11;19(1). doi: 10.1093/ecco-jcc/jjae197.
BACKGROUND: Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a complex condition with diverse manifestations; recent advances in multi-omics technologies are helping researchers unravel its molecular characteristics to develop targeted treatments. OBJECTIVES: In this work, we explored one of the largest multi-omics cohorts in IBD, the Study of a Prospective Adult Research Cohort (SPARC IBD), with the goal of identifying predictive biomarkers for CD and UC and elucidating patient subtypes. DESIGN: We analyzed genomics, transcriptomics (gut biopsy samples), and proteomics (blood plasma) from hundreds of patients from SPARC IBD. We trained a machine learning model that classifies UC versus CD samples. In parallel, we integrated multi-omics data to unveil patient subgroups in each of the 2 indications independently and analyzed the molecular phenotypes of these patient subpopulations. RESULTS: The high performance of the model showed that multi-omics signatures are able to discriminate between the 2 indications. The most predictive features of the model, both known and novel omics signatures for IBD, can potentially be used as diagnostic biomarkers. Patient subgroup analysis in each indication uncovered omics features associated with disease severity in UC patients and with tissue inflammation in CD patients. This culminates with the observation of 2 CD subpopulations characterized by distinct inflammation profiles. CONCLUSIONS: Our work unveiled potential biomarkers to discriminate between CD and UC and to stratify each population into well-defined subgroups, offering promising avenues for the application of precision medicine strategies.
背景:炎症性肠病(IBD)包括克罗恩病(CD)和溃疡性结肠炎(UC),是一种表现多样的复杂疾病;多组学技术的最新进展正在帮助研究人员揭示其分子特征,以开发针对性的治疗方法。 目的:在这项研究中,我们探索了IBD领域最大的多组学队列之一,即成人前瞻性研究队列(SPARC IBD),旨在识别CD和UC的预测性生物标志物,并阐明患者亚型。 设计:我们分析了来自SPARC IBD的数百名患者的基因组学、转录组学(肠道活检样本)和蛋白质组学(血浆)数据。我们训练了一个机器学习模型来区分UC和CD样本。同时,我们整合多组学数据,分别揭示这两种疾病的患者亚组,并分析这些患者亚群的分子表型。 结果:模型的高性能表明多组学特征能够区分这两种疾病。该模型中最具预测性的特征,包括IBD已知和新发现的组学特征,都有可能用作诊断生物标志物。每种疾病的患者亚组分析揭示了与UC患者疾病严重程度以及CD患者组织炎症相关的组学特征。这最终观察到了以不同炎症特征为特点的2个CD亚群。 结论:我们的研究揭示了区分CD和UC以及将每个群体分层为明确亚组的潜在生物标志物,为精准医学策略的应用提供了有前景的途径。
BMC Immunol. 2015-2-10
United European Gastroenterol J. 2024-12
J Crohns Colitis. 2019-3-30
Therap Adv Gastroenterol. 2025-8-12
Front Immunol. 2025-6-30
Lab Anim Res. 2025-2-3
Bioinformatics. 2023-9-2