文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多组学数据整合识别出炎症性肠病中的新型生物标志物和患者亚组。

Multi-omics data integration identifies novel biomarkers and patient subgroups in inflammatory bowel disease.

作者信息

Preto António José, Chanana Shaurya, Ence Daniel, Healy Matthew D, Domingo-Fernández Daniel, West Kiana A

机构信息

Enveda, Boulder, CO 80301, United States.

出版信息

J Crohns Colitis. 2025 Jan 11;19(1). doi: 10.1093/ecco-jcc/jjae197.


DOI:10.1093/ecco-jcc/jjae197
PMID:39756419
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11792892/
Abstract

BACKGROUND: Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a complex condition with diverse manifestations; recent advances in multi-omics technologies are helping researchers unravel its molecular characteristics to develop targeted treatments. OBJECTIVES: In this work, we explored one of the largest multi-omics cohorts in IBD, the Study of a Prospective Adult Research Cohort (SPARC IBD), with the goal of identifying predictive biomarkers for CD and UC and elucidating patient subtypes. DESIGN: We analyzed genomics, transcriptomics (gut biopsy samples), and proteomics (blood plasma) from hundreds of patients from SPARC IBD. We trained a machine learning model that classifies UC versus CD samples. In parallel, we integrated multi-omics data to unveil patient subgroups in each of the 2 indications independently and analyzed the molecular phenotypes of these patient subpopulations. RESULTS: The high performance of the model showed that multi-omics signatures are able to discriminate between the 2 indications. The most predictive features of the model, both known and novel omics signatures for IBD, can potentially be used as diagnostic biomarkers. Patient subgroup analysis in each indication uncovered omics features associated with disease severity in UC patients and with tissue inflammation in CD patients. This culminates with the observation of 2 CD subpopulations characterized by distinct inflammation profiles. CONCLUSIONS: Our work unveiled potential biomarkers to discriminate between CD and UC and to stratify each population into well-defined subgroups, offering promising avenues for the application of precision medicine strategies.

摘要

背景:炎症性肠病(IBD)包括克罗恩病(CD)和溃疡性结肠炎(UC),是一种表现多样的复杂疾病;多组学技术的最新进展正在帮助研究人员揭示其分子特征,以开发针对性的治疗方法。 目的:在这项研究中,我们探索了IBD领域最大的多组学队列之一,即成人前瞻性研究队列(SPARC IBD),旨在识别CD和UC的预测性生物标志物,并阐明患者亚型。 设计:我们分析了来自SPARC IBD的数百名患者的基因组学、转录组学(肠道活检样本)和蛋白质组学(血浆)数据。我们训练了一个机器学习模型来区分UC和CD样本。同时,我们整合多组学数据,分别揭示这两种疾病的患者亚组,并分析这些患者亚群的分子表型。 结果:模型的高性能表明多组学特征能够区分这两种疾病。该模型中最具预测性的特征,包括IBD已知和新发现的组学特征,都有可能用作诊断生物标志物。每种疾病的患者亚组分析揭示了与UC患者疾病严重程度以及CD患者组织炎症相关的组学特征。这最终观察到了以不同炎症特征为特点的2个CD亚群。 结论:我们的研究揭示了区分CD和UC以及将每个群体分层为明确亚组的潜在生物标志物,为精准医学策略的应用提供了有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/75f7e1e44d74/jjae197_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/cf228a68c536/jjae197_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/36bb4f01e078/jjae197_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/15e4efdcf76b/jjae197_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/58b0c0728c80/jjae197_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/0b2539c548b7/jjae197_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/75f7e1e44d74/jjae197_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/cf228a68c536/jjae197_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/36bb4f01e078/jjae197_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/15e4efdcf76b/jjae197_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/58b0c0728c80/jjae197_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/0b2539c548b7/jjae197_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac2/11792892/75f7e1e44d74/jjae197_fig5.jpg

相似文献

[1]
Multi-omics data integration identifies novel biomarkers and patient subgroups in inflammatory bowel disease.

J Crohns Colitis. 2025-1-11

[2]
Circulating miR-199a and long noncoding-RNA ANRIL as Promising Diagnostic Biomarkers for Inflammatory Bowel Disease.

Inflamm Bowel Dis. 2024-9-3

[3]
Development and validation of diagnosis model for inflammatory bowel diseases based on a serologic biomarker panel: A decision tree model study.

Arab J Gastroenterol. 2025-2

[4]
MicroRNA signatures differentiate Crohn's disease from ulcerative colitis.

BMC Immunol. 2015-2-10

[5]
Preclinical Protein Signatures of Crohn's Disease and Ulcerative Colitis: A Nested Case-Control Study Within Large Population-Based Cohorts.

Gastroenterology. 2025-4

[6]
Host-microbe multi-omics and succinotype profiling have prognostic value for future relapse in patients with inflammatory bowel disease.

Gut Microbes. 2025-12

[7]
Inflammatory bowel disease genomics, transcriptomics, proteomics and metagenomics meet artificial intelligence.

United European Gastroenterol J. 2024-12

[8]
Identifying robust biomarkers for the diagnosis and subtype distinction of inflammatory bowel disease through comprehensive serum metabolomic profiling.

Sci Rep. 2025-2-15

[9]
RNA methylation machinery and mA target genes as circulating biomarkers of ulcerative colitis and Crohn's disease: Correlation with disease activity, location, and inflammatory cytokines.

Clin Chim Acta. 2024-7-15

[10]
High-Throughput Identification of the Plasma Proteomic Signature of Inflammatory Bowel Disease.

J Crohns Colitis. 2019-3-30

引用本文的文献

[1]
Identifying inflammatory bowel disease subtypes: a comprehensive exploration of transcriptomic data and machine learning-based approaches.

Therap Adv Gastroenterol. 2025-8-12

[2]
Cellular senescence defining the disease characteristics of Crohn's disease.

Front Immunol. 2025-6-30

[3]
Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal cancer using machine learning.

Sci Rep. 2025-7-12

[4]
Zebrafish as a model for human epithelial pathology.

Lab Anim Res. 2025-2-3

本文引用的文献

[1]
Integrative biomarker discovery and immune profiling for ulcerative colitis: a multi-methodological approach.

Sci Rep. 2024-10-16

[2]
Correlation Between Serum and Fecal Biomarkers and Patient-Reported Outcomes in Patients with Crohn's Disease and Ulcerative Colitis.

Dig Dis Sci. 2024-6

[3]
Data-driven identification of predictive risk biomarkers for subgroups of osteoarthritis using interpretable machine learning.

Nat Commun. 2024-4-1

[4]
Serum fibroblast growth factor 19 level correlates inversely with clinical and endoscopic activity of inflammatory bowel disease.

Adv Clin Exp Med. 2025-2

[5]
pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods.

BMC Bioinformatics. 2023-12-7

[6]
USP38 exacerbates atrial inflammation, fibrosis, and susceptibility to atrial fibrillation after myocardial infarction in mice.

Mol Med. 2023-11-12

[7]
PyDESeq2: a python package for bulk RNA-seq differential expression analysis.

Bioinformatics. 2023-9-2

[8]
A precise molecular subtyping of ulcerative colitis reveals the immune heterogeneity and predicts clinical drug responses.

J Transl Med. 2023-7-13

[9]
Multiomics-empowered Deep Phenotyping of Ulcerative Colitis Identifies Biomarker Signatures Reporting Functional Remission States.

J Crohns Colitis. 2023-10-20

[10]
Knocking down GALNT6 promotes pyroptosis of pancreatic ductal adenocarcinoma cells through NF-κB/NLRP3/GSDMD and GSDME signaling pathway.

Front Oncol. 2023-2-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索