文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新型磁性非均相纳米结构钯催化剂的制备与表征及其在铃木反应和施蒂勒反应中的催化研究

Preparation and identification of new magnetic heterogeneous nanostructural palladium catalyst, and its catalytic study in Suzuki and Stille reactions.

作者信息

Safari Sahar, Ghorbani-Choghamarani Arash, Monem Arezo, Rezaeivala Majid

机构信息

Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.

Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran.

出版信息

Sci Rep. 2025 Jul 12;15(1):25272. doi: 10.1038/s41598-025-10438-8.


DOI:10.1038/s41598-025-10438-8
PMID:40652078
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12255767/
Abstract

This study designed and synthesized a new magnetic Palladium-containing nanocatalyst supported on ZnFeO (zinc ferrite magnetic nanoparticles). TGA, TEM, FT-IR, EDS, XRD, BET, VSM, X-ray mapping, ICP-OES, and SEM techniques are used to analyze the structure and magnetic properties of this nanomagnetic material. The synthesized heterogeneous catalyst (ZnFeO@SiO@CPTMS@PYA-Pd) revealed remarkable properties, including high thermal and chemical stability, low toxicity, and efficient reusability. The catalytic behavior of ZnFeO@SiO@CPTMS@PYA-Pd was studied in very well-known C-C bond formation reactions (i.e., Stille and Suzuki cross-coupling reactions), and substituted biphenyls were achieved with good to high yield and conversion. The catalyst demonstrated exceptional performance in cross-coupling reactions, achieving yields of up to 96% for Suzuki reactions (100 min reaction time) and 94% for Stille reactions (120 min reaction time) under optimized conditions. The ZnFeO@SiO@CPTMS@PYA-Pd was recovered easily by an external magnet and reused for five consecutive runs while maintaining with negligible decreases in its activity in described coupling reactions.

摘要

本研究设计并合成了一种负载在ZnFeO(锌铁氧体磁性纳米颗粒)上的新型含钯磁性纳米催化剂。采用热重分析(TGA)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、能谱分析(EDS)、X射线衍射(XRD)、比表面积分析(BET)、振动样品磁强计(VSM)、X射线映射、电感耦合等离子体质谱(ICP-OES)和扫描电子显微镜(SEM)技术来分析这种纳米磁性材料的结构和磁性。合成的多相催化剂(ZnFeO@SiO@CPTMS@PYA-Pd)具有显著的性能,包括高热稳定性和化学稳定性、低毒性以及高效的可重复使用性。在非常著名的C-C键形成反应(即Stille和Suzuki交叉偶联反应)中研究了ZnFeO@SiO@CPTMS@PYA-Pd的催化行为,以良好至高的产率和转化率得到了取代联苯。该催化剂在交叉偶联反应中表现出优异的性能,在优化条件下,Suzuki反应(反应时间100分钟)的产率高达96%,Stille反应(反应时间120分钟)的产率高达94%。ZnFeO@SiO@CPTMS@PYA-Pd可通过外部磁铁轻松回收,并连续重复使用五次,同时在所述偶联反应中其活性的降低可忽略不计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/f6aa0dc83ddb/41598_2025_10438_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/8d446bda0852/41598_2025_10438_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/f2313532375a/41598_2025_10438_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/c72d197e4e5c/41598_2025_10438_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/3b3fd6f9049a/41598_2025_10438_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/b2070a1e28fa/41598_2025_10438_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/c9380bfe9c09/41598_2025_10438_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/cc7ecf47440f/41598_2025_10438_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/3129f2849481/41598_2025_10438_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/15eb23029418/41598_2025_10438_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/f0e90292ec04/41598_2025_10438_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/b034f1b1c1c2/41598_2025_10438_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/90c68ed6a8f2/41598_2025_10438_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/c6e51f1de6af/41598_2025_10438_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/7bf8ccb642a5/41598_2025_10438_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/db774f3bcd79/41598_2025_10438_Sch2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/1201555d243b/41598_2025_10438_Sch3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/8619e6d4051a/41598_2025_10438_Sch4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/26829417b0ec/41598_2025_10438_Sch5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/abb95f4c080d/41598_2025_10438_Sch6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/0615ee6cdc49/41598_2025_10438_Sch7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/8c85abf603d7/41598_2025_10438_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/f6aa0dc83ddb/41598_2025_10438_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/8d446bda0852/41598_2025_10438_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/f2313532375a/41598_2025_10438_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/c72d197e4e5c/41598_2025_10438_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/3b3fd6f9049a/41598_2025_10438_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/b2070a1e28fa/41598_2025_10438_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/c9380bfe9c09/41598_2025_10438_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/cc7ecf47440f/41598_2025_10438_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/3129f2849481/41598_2025_10438_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/15eb23029418/41598_2025_10438_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/f0e90292ec04/41598_2025_10438_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/b034f1b1c1c2/41598_2025_10438_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/90c68ed6a8f2/41598_2025_10438_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/c6e51f1de6af/41598_2025_10438_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/7bf8ccb642a5/41598_2025_10438_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/db774f3bcd79/41598_2025_10438_Sch2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/1201555d243b/41598_2025_10438_Sch3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/8619e6d4051a/41598_2025_10438_Sch4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/26829417b0ec/41598_2025_10438_Sch5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/abb95f4c080d/41598_2025_10438_Sch6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/0615ee6cdc49/41598_2025_10438_Sch7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/8c85abf603d7/41598_2025_10438_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5011/12255767/f6aa0dc83ddb/41598_2025_10438_Fig15_HTML.jpg

相似文献

[1]
Preparation and identification of new magnetic heterogeneous nanostructural palladium catalyst, and its catalytic study in Suzuki and Stille reactions.

Sci Rep. 2025-7-12

[2]
Palladium anchored to BisPyP@bilayer-SiO@NMP organic-inorganic hybrid as an efficient and recoverable novel nanocatalyst in suzuki and stille C-C coupling reactions.

Sci Rep. 2024-4-18

[3]
A palladium(0)-threonine complex immobilized on the surface of magnetic mesocellular foam: an efficient, stable, and magnetically separable nanocatalyst for Suzuki, Stille, and Heck cross-coupling reactions.

RSC Adv. 2023-6-12

[4]
A nanomagnetic triazole-based Schiff-base complex of palladium(0) as an efficient heterogeneous catalyst for the Mizoroki-Heck C-C cross-coupling reaction under green conditions.

Nanoscale Adv. 2025-6-18

[5]
Graphene oxide supported oxidovanadium coordination compound as an efficient catalyst for the green oxidation of benzyl alcohol.

Sci Rep. 2025-7-2

[6]
Copper(ii) complex-decorated ZrFeO nanoparticles as a recyclable magnetic nanocatalyst for synthesis of N-containing heterocycles.

Nanoscale Adv. 2025-5-12

[7]
An AlFeO@SiO-SOH innovative nanocatalyst: a sustainable approach for the A3 coupling reaction in a DES for 2-thioarylbenzoazoles.

Nanoscale Adv. 2025-5-8

[8]
Tetrahydrodipyrazolopyridine covalently immobilized on silica-coated magnetic nanoparticles as a basic heterogeneous catalyst for multicomponent synthesis of dihydropyrano[2,3-c]pyrazole derivatives and Knoevenagel condensation.

Sci Rep. 2025-7-3

[9]
UiO-66-NH metal-organic framework supported palladium/Schiff-base complex as a highly efficient and robust catalyst for the Suzuki reaction.

Nanoscale Adv. 2025-5-31

[10]
Synthesis of a hercynite supported phosphomolybdic acid magnetic nanocomposite as an efficient catalyst for the synthesis of N-heterocycles.

Nanoscale Adv. 2025-7-8

本文引用的文献

[1]
Mixed Carboxylate Ligands Bridging Tetra-Pr-Encapsulated Antimonotungstate: Syntheses, Structure, and Catalytic Activity for Imidazoles Synthesis.

Inorg Chem. 2024-12-2

[2]
Dendrimer templated ionic liquid nanomagnetic for efficient coupling reactions.

Sci Rep. 2024-10-23

[3]
The Assembly of Cerium(III)-Containing Silicotungstate with Lewis Acid-Base Sites Enables the Selective -Alkenylation of Oxindole.

Inorg Chem. 2024-10-14

[4]
FeO@gCN@Thiamine: a novel heterogeneous catalyst for the synthesis of heterocyclic compounds and microextraction of tebuconazole in food samples.

Sci Rep. 2024-9-14

[5]
Dy/Ho-encapsulated tartaric acid-functionalized tungstoantimonates: heterogeneous catalysts for isoindolinone synthesis.

Chem Commun (Camb). 2024-9-26

[6]
FeO@SiO@NTMPThio-Cu: a sustainable and eco-friendly approach for the synthesis of heterocycle derivatives using a novel dendrimer template nanocatalyst.

Sci Rep. 2024-7-29

[7]
Palladium anchored to BisPyP@bilayer-SiO@NMP organic-inorganic hybrid as an efficient and recoverable novel nanocatalyst in suzuki and stille C-C coupling reactions.

Sci Rep. 2024-4-18

[8]
Indirect Electrocatalysis S─N/S─S Bond Construction by Robust Polyoxometalate Based Foams.

Adv Mater. 2023-10

[9]
Green synthesis of ZnFeO nanoparticles using plant extracts and their applications: A review.

Sci Total Environ. 2023-5-10

[10]
Recent advances in Metal Organic Framework (MOF)-based hierarchical composites for water treatment by adsorptional photocatalysis: A review.

Environ Res. 2023-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索