Suppr超能文献

基于葡聚糖和纤维蛋白的具有可调节结构、力学及降解特性的双网络微凝胶。

Double network microgels based on dextran and fibrin with tunable structural, mechanical, and degradation properties.

作者信息

Jung Shannon Anna, Küttner Hannah, Wein Svenja, Malyaran Hanna, Reicher Luca Anna, Schmidt Caroline, Marcinkowska Nicole, Al Enezy-Ulbrich Miriam Aischa, Rütten Stephan, Neuss Sabine, Pich Andrij

机构信息

DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.

Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany; Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.

出版信息

J Colloid Interface Sci. 2025 Dec 15;700(Pt 1):138345. doi: 10.1016/j.jcis.2025.138345. Epub 2025 Jul 4.

Abstract

Colloidal hydrogels, also known as microgels, are promising scaffold materials in the biomedical field. Microgels exhibit high biocompatibility, porosity, and mechanical stability, crucial in supporting cell development. Bio-based polymers, such as fibrin or dextran, are desirable for controlling the properties of microgels. The advantage of using these polymers includes producing degradable microgels that enable the release of active components. In this work, we fabricated fibrin-dextran-methacrylate (dextran-MA) interpenetrating polymer network microgels with tunable porosity, stiffness, and degradation profiles using droplet-based microfluidics. We incorporated fibrin to promote cell growth, while adding dextran-MA ensures improved structural stability of the microgels. By systematically varying the dextran-MA concentrations, we produced fibrin-dextran-MA microgels with a tunable range of stiffness, porosity, and degradation time, highlighting the material's versatility for biomedical applications. In particular, increasing the dextran-MA content reduced pore size, thereby offering a means to control the encapsulation and release of active components. Degradation studies using plasminogen and dextranase revealed that the degradation of the microgels strongly depended on the polymer concentration. This dependency allows controlling the degradation time and the release kinetics of active components, e.g., hepatocyte growth factor (HGF). HGF encapsulated in fibrin microgels was released rapidly through diffusion, while the release from fibrin-dextran microgels was delayed until enzymatic degradation. This delayed degradation of microgels demonstrates the potential to use the microgels for programmable release. Encapsulation of HGF in fibrin and fibrin-dextran-MA microgels promoted the spreading of human mesenchymal stem cells on the microgels, highlighting their potential for personalized Tissue Engineering applications. Our studies reveal that engineered microgels composed of fibrin and dextran-MA can be used as colloidal building blocks to design biomaterials with tailored stiffness, porosity, degradation, and programmed release behavior.

摘要

胶体水凝胶,也称为微凝胶,是生物医学领域中很有前景的支架材料。微凝胶具有高生物相容性、孔隙率和机械稳定性,这对支持细胞发育至关重要。生物基聚合物,如纤维蛋白或右旋糖酐,对于控制微凝胶的性能是理想的。使用这些聚合物的优点包括生产可降解的微凝胶,从而能够释放活性成分。在这项工作中,我们使用基于液滴的微流控技术制备了具有可调孔隙率、刚度和降解特性的纤维蛋白-右旋糖酐-甲基丙烯酸酯(右旋糖酐-MA)互穿聚合物网络微凝胶。我们加入纤维蛋白以促进细胞生长,同时添加右旋糖酐-MA可确保微凝胶的结构稳定性得到改善。通过系统地改变右旋糖酐-MA的浓度,我们制备了具有可调刚度、孔隙率和降解时间范围的纤维蛋白-右旋糖酐-MA微凝胶,突出了该材料在生物医学应用中的多功能性。特别是,增加右旋糖酐-MA的含量会减小孔径,从而提供一种控制活性成分包封和释放的方法。使用纤溶酶原和右旋糖酐酶的降解研究表明,微凝胶的降解强烈依赖于聚合物浓度。这种依赖性使得能够控制降解时间和活性成分(如肝细胞生长因子(HGF))的释放动力学。包裹在纤维蛋白微凝胶中的HGF通过扩散迅速释放,而从纤维蛋白-右旋糖酐微凝胶中的释放则延迟到酶促降解。微凝胶的这种延迟降解证明了将微凝胶用于可编程释放的潜力。HGF包裹在纤维蛋白和纤维蛋白-右旋糖酐-MA微凝胶中促进了人间充质干细胞在微凝胶上的铺展,突出了它们在个性化组织工程应用中的潜力。我们的研究表明,由纤维蛋白和右旋糖酐-MA组成 的工程化微凝胶可用作胶体构建块来设计具有定制刚度、孔隙率、降解和可编程释放行为的生物材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验