Liu Yang, Zhao Keming, Luo Lihui, Zhang Ziheng, Qian Zhenghang, Jiang Cenk, Du Zhicheng, Deng Simin, Yang Chengming, Wu Duanpo, Wang Shuai, Huang Xingru, Yan Chenggang, Zhu Yingting, Zhuo Yehong, Qu Chunsheng, Chen Jiaqi, Huang Zhenqiang, Lu Chenying, Chen Minjiang, Yu Dongmei, Wang Jiantao, Qin Peiwu, Ji Jiansong
Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China.
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
NPJ Digit Med. 2025 Jul 13;8(1):435. doi: 10.1038/s41746-025-01849-y.
Pathologic myopia is a leading cause of visual impairment and blindness. While deep learning-based approaches aid in recognizing pathologic myopia using color fundus photography, they often rely on implicit patterns that lack clinical interpretability. This study aims to diagnose pathologic myopia by identifying clinically significant morphologic patterns, specifically posterior staphyloma and myopic maculopathy, by leveraging ultra-widefield (UWF) images that provide a broad retinal field of view. We curate a large-scale, multi-source UWF myopia dataset called PSMM and introduce RealMNet, an end-to-end lightweight framework designed to identify these challenging patterns. Benefiting from the fast pretraining distillation backbone, RealMNet comprises only 21 million parameters, which facilitates deployment for medical devices. Extensive experiments conducted across three different protocols demonstrate the robustness and generalizability of RealMNet. RealMNet achieves an F1 Score of 0.7970 (95% CI 0.7612-0.8328), mAP of 0.8497 (95% CI 0.8058-0.8937), and AUROC of 0.9745 (95% CI 0.9690-0.9801), showcasing promise in clinical applications.
病理性近视是视力损害和失明的主要原因。虽然基于深度学习的方法有助于通过彩色眼底照片识别病理性近视,但它们通常依赖于缺乏临床可解释性的隐含模式。本研究旨在通过利用提供广阔视网膜视野的超广角(UWF)图像,识别具有临床意义的形态学模式,特别是后巩膜葡萄肿和近视性黄斑病变,以诊断病理性近视。我们精心策划了一个名为PSMM的大规模、多源UWF近视数据集,并引入了RealMNet,这是一个旨在识别这些具有挑战性模式的端到端轻量级框架。受益于快速预训练蒸馏主干,RealMNet仅包含2100万个参数,便于在医疗设备上部署。在三种不同协议上进行的广泛实验证明了RealMNet的稳健性和通用性。RealMNet的F1分数为0.7970(95%置信区间0.7612-0.8328),平均精度均值为0.8497(95%置信区间0.8058-0.8937),曲线下面积为0.9745(95%置信区间0.9690-0.9801),在临床应用中展现出前景。