文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过深度学习检测眼部外部照片中的疾病迹象。

Detection of signs of disease in external photographs of the eyes via deep learning.

机构信息

Google Health, Palo Alto, CA, USA.

Artera, Mountain View, CA, USA.

出版信息

Nat Biomed Eng. 2022 Dec;6(12):1370-1383. doi: 10.1038/s41551-022-00867-5. Epub 2022 Mar 29.


DOI:10.1038/s41551-022-00867-5
PMID:35352000
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8963675/
Abstract

Retinal fundus photographs can be used to detect a range of retinal conditions. Here we show that deep-learning models trained instead on external photographs of the eyes can be used to detect diabetic retinopathy (DR), diabetic macular oedema and poor blood glucose control. We developed the models using eye photographs from 145,832 patients with diabetes from 301 DR screening sites and evaluated the models on four tasks and four validation datasets with a total of 48,644 patients from 198 additional screening sites. For all four tasks, the predictive performance of the deep-learning models was significantly higher than the performance of logistic regression models using self-reported demographic and medical history data, and the predictions generalized to patients with dilated pupils, to patients from a different DR screening programme and to a general eye care programme that included diabetics and non-diabetics. We also explored the use of the deep-learning models for the detection of elevated lipid levels. The utility of external eye photographs for the diagnosis and management of diseases should be further validated with images from different cameras and patient populations.

摘要

眼底照片可用于检测多种视网膜疾病。在这里,我们展示了经过训练的深度学习模型可以利用外部眼部照片来检测糖尿病性视网膜病变(DR)、糖尿病性黄斑水肿和血糖控制不佳。我们使用来自 301 个 DR 筛查点的 145832 名糖尿病患者的眼部照片开发了这些模型,并在四项任务和四个验证数据集中进行了评估,这些数据集共有来自 198 个额外筛查点的 48644 名患者。对于所有四项任务,深度学习模型的预测性能均明显高于使用自我报告的人口统计学和医疗史数据的逻辑回归模型的性能,而且预测结果可以推广到瞳孔放大的患者、来自不同 DR 筛查计划的患者以及包含糖尿病患者和非糖尿病患者的普通眼科护理计划的患者。我们还探索了使用深度学习模型来检测血脂升高的情况。外部眼部照片在疾病诊断和管理中的应用价值需要通过来自不同相机和患者群体的图像进行进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/8eb5e4fbdc8f/41551_2022_867_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/a274a2e92779/41551_2022_867_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/ceda7963e3cf/41551_2022_867_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/32329cc660a5/41551_2022_867_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/aac22646fa63/41551_2022_867_Fig4_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/d7029567e036/41551_2022_867_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/b4c4f049af86/41551_2022_867_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/8eb5e4fbdc8f/41551_2022_867_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/a274a2e92779/41551_2022_867_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/ceda7963e3cf/41551_2022_867_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/32329cc660a5/41551_2022_867_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/aac22646fa63/41551_2022_867_Fig4_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/d7029567e036/41551_2022_867_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/b4c4f049af86/41551_2022_867_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/8963675/8eb5e4fbdc8f/41551_2022_867_Fig7_ESM.jpg

相似文献

[1]
Detection of signs of disease in external photographs of the eyes via deep learning.

Nat Biomed Eng. 2022-12

[2]
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.

Cochrane Database Syst Rev. 2015-1-7

[3]
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.

Cochrane Database Syst Rev. 2011-7-6

[4]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[5]
Diabetic retinopathy detection from fundus images: A wide survey from grading to segmentation of lesions.

Comput Biol Med. 2025-9

[6]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[7]
Impact of Gold-Standard Label Errors on Evaluating Performance of Deep Learning Models in Diabetic Retinopathy Screening: Nationwide Real-World Validation Study.

J Med Internet Res. 2024-8-14

[8]
Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review.

Surv Ophthalmol. 2024

[9]
Anti-VEGF drugs compared with laser photocoagulation for the treatment of diabetic retinopathy: a systematic review and economic analysis.

Health Technol Assess. 2025-5-7

[10]
Fenofibrate for diabetic retinopathy.

Cochrane Database Syst Rev. 2023-6-13

引用本文的文献

[1]
Effectiveness and satisfaction of fully self-service fundus disease screening among middle-aged individuals: a cross-sectional study.

BMJ Open Ophthalmol. 2025-8-26

[2]
Diagnosing pathologic myopia by identifying morphologic patterns using ultra widefield images with deep learning.

NPJ Digit Med. 2025-7-13

[3]
Ensemble fuzzy deep learning for brain tumor detection.

Sci Rep. 2025-2-19

[4]
Advances and prospects of multi-modal ophthalmic artificial intelligence based on deep learning: a review.

Eye Vis (Lond). 2024-10-1

[5]
Retinal Imaging-Based Oculomics: Artificial Intelligence as a Tool in the Diagnosis of Cardiovascular and Metabolic Diseases.

Biomedicines. 2024-9-23

[6]
Artificial intelligence in chronic kidney diseases: methodology and potential applications.

Int Urol Nephrol. 2025-1

[7]
Deep learning for predicting circular retinal nerve fiber layer thickness from fundus photographs and diagnosing glaucoma.

Heliyon. 2024-6-28

[8]
Novel automated non-invasive detection of ocular surface squamous neoplasia using artificial intelligence.

World J Methodol. 2024-6-20

[9]
Quantifying impairment and disease severity using AI models trained on healthy subjects.

NPJ Digit Med. 2024-7-6

[10]
Resilience to diabetic retinopathy.

Prog Retin Eye Res. 2024-7

本文引用的文献

[1]
Predicting the risk of developing diabetic retinopathy using deep learning.

Lancet Digit Health. 2021-1

[2]
Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study.

Lancet Digit Health. 2021-2

[3]
A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations.

Lancet Digit Health. 2020-6

[4]
Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms.

Lancet Digit Health. 2020-10

[5]
Use and Content of Primary Care Office-Based vs Telemedicine Care Visits During the COVID-19 Pandemic in the US.

JAMA Netw Open. 2020-10-1

[6]
A digital biomarker of diabetes from smartphone-based vascular signals.

Nat Med. 2020-8-17

[7]
Insights into Systemic Disease through Retinal Imaging-Based Oculomics.

Transl Vis Sci Technol. 2020-2-12

[8]
Detection of anaemia from retinal fundus images via deep learning.

Nat Biomed Eng. 2019-12-23

[9]
Serum lipids and risk of atherosclerosis in xanthelasma palpebrarum: A systematic review and meta-analysis.

J Am Acad Dermatol. 2019-9-6

[10]
Eyelid laxity and sleep apnea syndrome: a review.

Rom J Ophthalmol. 2019

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索