Suppr超能文献

利用全生物质进行可回收生物杂化聚合物网络的机械化学合成

Mechanochemical Synthesis of Recyclable Biohybrid Polymer Networks Using Whole Biomass.

作者信息

Jiang Meng, Bird Emily, Ham Woojung, Worch Joshua C

机构信息

Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA.

Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA.

出版信息

Angew Chem Int Ed Engl. 2025 Sep 8;64(37):e202510449. doi: 10.1002/anie.202510449. Epub 2025 Aug 4.

Abstract

Whole-plant biomass from non-agricultural sources and waste biomass from processing agricultural products are both promising feedstocks for biopolymer production because they are abundant and do not compete with food production. However, their processing steps are notoriously tedious with the final materials often displaying inferior performance and limited scope in their properties. Here, we report a strategy to integrate whole-cell spirulina, a green-blue algae, into robust biohybrid algae-polyimine networks by leveraging a mechanochemical ball milling method. This strategy provides a greener synthetic approach to conventional solvent casting methods for polyimine synthesis; it simultaneously overcomes persistent constraints encountered in biomass processing and derivatization. The biohybrid algae-based materials retain adaptability and recyclability imparted by their underlying dynamic covalent polymer matrix and display enhanced mechanical properties compared to their all-synthetic equivalents. These advantageous properties are attributed to the unique morphology of the ball milled biohybrid materials which are facilitated by integration of the spirulina into the polymer matrix. Substituting spirulina with alternative biomass sources such as waste agricultural products also yields robust biohybrid networks, thus highlighting the broad utility of this straightforward mechanochemical synthesis to create more sustainable materials.

摘要

来自非农业来源的全植物生物质和农产品加工产生的废弃生物质都是生物聚合物生产的有前景的原料,因为它们储量丰富且不与粮食生产竞争。然而,它们的加工步骤非常繁琐,最终材料的性能往往较差,性能范围也有限。在此,我们报告了一种策略,即通过利用机械化学球磨法,将蓝绿藻全细胞螺旋藻整合到坚固的生物杂交藻-聚亚胺网络中。该策略为传统的聚亚胺合成溶剂浇铸方法提供了一种更绿色的合成方法;它同时克服了生物质加工和衍生化过程中一直存在的限制。基于生物杂交藻的材料保留了其潜在的动态共价聚合物基质赋予的适应性和可回收性,并且与全合成材料相比,显示出增强的机械性能。这些有利特性归因于球磨生物杂交材料的独特形态,这是通过将螺旋藻整合到聚合物基质中实现的。用废弃农产品等替代生物质来源取代螺旋藻也能产生坚固的生物杂交网络,从而突出了这种直接的机械化学合成方法在创造更可持续材料方面的广泛用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/184a/12416453/a987441e7fe1/ANIE-64-e202510449-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验