Suppr超能文献

最小基因特征可实现对……抗生素耐药性的高精度预测 。 (你提供的原文似乎不完整,最后的“in.”后面应该还有具体内容)

Minimal Gene Signatures Enable High-Accuracy Prediction of Antibiotic Resistance in .

作者信息

Shahreen Nabia, Shahid Syed Ahsan, Subhani Mahfuze, Al-Siyabi Adil, Saha Rajib

机构信息

Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln.

Natural and Medical Sciences Research Center, University of Nizwa.

出版信息

bioRxiv. 2025 May 3:2025.04.29.651273. doi: 10.1101/2025.04.29.651273.

Abstract

Antimicrobial resistance (AMR) in Pseudomonas aeruginosa poses a critical global health challenge, with current diagnostics relying on slow, culture-based methods. Here, we present a ML framework leveraging transcriptomic data to predict antibiotic resistance with high accuracy. We applied a genetic algorithm to 414 clinical isolates to identify minimal, highly predictive gene sets (~35-40 genes) distinguishing resistant from susceptible strains for meropenem, ciprofloxacin, tobramycin, and ceftazidime. Automated ML classifiers trained on these sets achieved accuracies of 96-99% on test data (F1 scores: 0.93-0.99), surpassing clinical deployment thresholds. Multiple distinct, non-overlapping gene subsets exhibited comparable performance, indicating that resistance acquisition broadly impacts the expression of diverse regulatory and metabolic genes. Comparison with known resistance markers from CARD and operon annotations revealed a substantial number of previously unannotated clusters, highlighting significant knowledge gaps in current AMR understanding. Mapping these genes onto independently modulated gene sets (iModulons) revealed transcriptional adaptations across diverse genetic regions. Overall, this study presents a streamlined machine-learning workflow for transcriptomic data and offers a pathway toward rapid diagnostics and personalized treatment strategies against AMR.

摘要

铜绿假单胞菌中的抗菌药物耐药性(AMR)对全球健康构成了严峻挑战,目前的诊断方法依赖于基于培养的缓慢方法。在此,我们提出了一个利用转录组数据以高精度预测抗生素耐药性的机器学习框架。我们对414株临床分离株应用了遗传算法,以识别区分美罗培南、环丙沙星、妥布霉素和头孢他啶耐药菌株与敏感菌株的最小、高度预测性基因集(约35 - 40个基因)。在这些基因集上训练的自动化机器学习分类器在测试数据上的准确率达到了96 - 99%(F1分数:0.93 - 0.99),超过了临床应用阈值。多个不同的、不重叠的基因子集表现出可比的性能,表明耐药性的获得广泛影响了多种调控和代谢基因的表达。与来自CARD的已知耐药标记和操纵子注释进行比较,发现了大量以前未注释的簇,凸显了当前对AMR理解中的重大知识空白。将这些基因映射到独立调控的基因集(iModulons)上,揭示了不同基因区域的转录适应性。总体而言,本研究提出了一种用于转录组数据的简化机器学习工作流程,并为针对AMR的快速诊断和个性化治疗策略提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/844d/12247665/78a7b2ac2b6c/nihpp-2025.04.29.651273v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验