Suppr超能文献

补偿与皮质折叠相关变异的皮质厚度

Compensating Cortical Thickness for Cortical Folding-Related Variation.

作者信息

Demirci Nagehan, Coalson Timothy S, Holland Maria A, Van Essen David C, Glasser Matthew F

机构信息

Department of Radiology, Washington University Medical School, St. Louis, MO, USA.

Department of Neuroscience, Washington University Medical School, St. Louis, MO, USA.

出版信息

bioRxiv. 2025 May 5:2025.05.03.651968. doi: 10.1101/2025.05.03.651968.

Abstract

Cortical thickness is a widely used biomarker of brain morphology and health, yet it is dependent on local cortical folding. Because gyral crowns are consistently thicker than sulcal fundi and cortical folds vary widely across individuals, these fluctuations introduce unmodeled nuisance variance that can obscure meaningful biological effects of interest. Previous global methods of folding compensation incompletely compensate for folding effects on cortical thickness and the spatial smoothing that is typically used to reduce these effects in the literature also markedly degrades spatial localization precision. To address these limitations, we developed a novel method for folding-compensated cortical thickness estimation that uses nonlinear local multiple regression with five folding measures to model and more completely remove folding-related variance from cortical thickness. This approach estimates what cortical thickness would have been in the absence of folding, yielding a more biologically interpretable measure of cortical architecture. We applied this new approach to data from the Young Adult Human Connectome Project (HCP-YA) and Aging Human Connectome Project (HCA), demonstrating substantial reductions in intra-areal and inter-individual variability, substantially increasing standardized effect sizes of age on cortical thickness while preserving the neurobiologically expected patterns, and avoiding the loss of spatial precision that occurs with the spatial smoothing that has traditionally been used in the literature. The method has been integrated into the HCP pipelines, facilitating its widespread use. By attenuating folding-induced variability, this technique enhances cortical thickness as a structural phenotype and may support more accurate cortical parcellation, longitudinal tracking, and biomarker discovery in brain health and disease.

摘要

皮质厚度是一种广泛应用于脑形态学和健康状况的生物标志物,但它依赖于局部皮质折叠情况。由于脑回顶部始终比脑沟底部厚,且个体间的皮质折叠差异很大,这些波动会引入未建模的干扰方差,从而可能掩盖感兴趣的有意义的生物学效应。以往的全局折叠补偿方法不能完全补偿折叠对皮质厚度的影响,而文献中通常用于减少这些影响的空间平滑处理也会显著降低空间定位精度。为了解决这些局限性,我们开发了一种用于折叠补偿皮质厚度估计的新方法,该方法使用具有五种折叠测量指标的非线性局部多元回归来建模,并更全面地从皮质厚度中去除与折叠相关的方差。这种方法估计了在没有折叠情况下的皮质厚度,从而产生了一种更具生物学解释性的皮质结构测量指标。我们将这种新方法应用于来自青年成人人类连接组计划(HCP-YA)和老年人类连接组计划(HCA)的数据,结果表明区域内和个体间的变异性大幅降低,年龄对皮质厚度的标准化效应大小显著增加,同时保留了神经生物学预期的模式,并且避免了传统文献中使用的空间平滑处理所导致的空间精度损失。该方法已被整合到HCP流程中,便于广泛使用。通过减弱折叠引起的变异性,这项技术增强了皮质厚度作为一种结构表型的作用,并可能支持在脑健康和疾病中进行更准确的皮质分区、纵向追踪和生物标志物发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/12247903/9eda5475a80b/nihpp-2025.05.03.651968v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验