Han Laura K M, Toenders Yara J, Shen Xueyi, Milaneschi Yuri, Whalley Heather C, Sämann Philipp G, Andlauer Til, Bauer Jochen, Berger Klaus, Borgers Tiana, Cole James H, Dannlowski Udo, Flinkenflügel Kira, Grabe Hans J, Gruber Oliver, Hahn Tim, Hamilton Paul J, Hatton Sean N, Hermesdorf Marco, Hickie Ian, Homann Jan, Kircher Tilo J, Krämer Bernd, Kraus Anna, Krug Axel, Lill Christina M, Medland Sarah E, Meinert Susanne, Panzenhagen Alana, Penninx Brenda W J H, van der Wee Nic J A, van Tol Marie-José, Völker Uwe, Völzke Henry, Weihs Antoine, Wittfeld Katharina, Thomopoulos Sophia I, Jahanshad Neda, Thompson Paul M, Pozzi Elena, Schmaal Lianne
Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands.
bioRxiv. 2025 May 11:2025.05.09.653064. doi: 10.1101/2025.05.09.653064.
Large-scale studies show that adults with major depressive disorder (MDD) generally have a higher imaging-predicted age relative to their chronological age (i.e., positive brain age gap) compared to controls, though considerable within-group variation exists. This study examines lifestyle, early-life, and genetic health risk factors contributing to the brain age gap. Identifying risk and resilience factors could help protect brain and mental health.
Using an established model trained on FreeSurfer-derived brain regions (www.photon-ai.com/enigma_brainage), we generated brain age predictions for 1,846 controls and 2,088 individuals with MDD (aged 18-75) from 12 international cohorts. Polygenic risk scores (PRS) were calculated for major depression, C-reactive protein, and body mass index (BMI) using large-scale GWAS results. Linear mixed models were applied to assess lifestyle (BMI, smoking, education), early-life childhood trauma, and genetic (PRS) health risk associations with the brain age gap. Additionally, we evaluated the link between the brain age gap and peripheral biological age indicators (epigenetic clocks).
Higher brain age gaps were significantly associated with BMI (β=0.01, P=0.02) and smoking (β=0.11, P=0.02), while lower brain age gaps were linked to higher education (β=-0.02, P=0.02). Higher childhood trauma scores predicted a higher brain age gap (β=0.04, P=0.01). Higher brain age gaps were positively associated with all PRS (βs=0.04-0.16, Ps=0.02-0.03). There were no significant interactions between diagnosis and assessed factors on the brain age gap. In a multivariable model, only modifiable health factors-BMI, smoking, and education-remained uniquely associated with brain age gaps.
Genetic liability for depression and related traits is linked to poorer brain health, but health behaviors potentially offer a key opportunity for intervention. This study underscores the importance of targeting modifiable lifestyle factors to mitigate poor brain health in depressed individuals, an approach perhaps under-recognized in clinical practice.
大规模研究表明,与对照组相比,患有重度抑郁症(MDD)的成年人相对于其实际年龄通常具有更高的影像预测年龄(即正脑龄差距),尽管组内存在相当大的差异。本研究探讨了导致脑龄差距的生活方式、早期生活和遗传健康风险因素。识别风险和复原力因素有助于保护大脑和心理健康。
我们使用在基于FreeSurfer得出的脑区上训练的既定模型(www.photon-ai.com/enigma_brainage),为来自12个国际队列的1846名对照组和2088名MDD患者(年龄在18 - 75岁之间)生成脑龄预测。使用大规模全基因组关联研究(GWAS)结果计算重度抑郁症、C反应蛋白和体重指数(BMI)的多基因风险评分(PRS)。应用线性混合模型来评估生活方式(BMI、吸烟、教育程度)、早期童年创伤以及遗传(PRS)健康风险与脑龄差距之间的关联。此外,我们评估了脑龄差距与外周生物学年龄指标(表观遗传时钟)之间的联系。
较高的脑龄差距与BMI(β = 0.01,P = 0.02)和吸烟(β = 0.11,P = 0.02)显著相关,而较低的脑龄差距与较高的教育程度相关(β = -0.02,P = 0.02)。较高的童年创伤评分预示着更高的脑龄差距(β = 0.04,P = 0.01)。较高的脑龄差距与所有PRS呈正相关(β值 = 0.04 - 0.16,P值 = 0.02 - 0.03)。在脑龄差距方面,诊断与评估因素之间没有显著的相互作用。在多变量模型中,只有可改变的健康因素——BMI、吸烟和教育程度——仍然与脑龄差距唯一相关。
抑郁症及相关特征的遗传易感性与较差的大脑健康相关,但健康行为可能提供关键的干预机会。本研究强调了针对可改变的生活方式因素以减轻抑郁症患者大脑健康不佳状况的重要性,这一方法在临床实践中可能未得到充分认识。