Zhao Xianjing, Zhang Zhengxiang, Shui Juntao, Xu Hui, Yang Yulong, Zhu Lequn, Chen Lei, Chang Shixin, Du Chunzhong, Yao Zhenwei, Fang Xiangming, Shi Lei
Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
iScience. 2025 Jun 13;28(7):112888. doi: 10.1016/j.isci.2025.112888. eCollection 2025 Jul 18.
Hematoma expansion (HE), including intraventricular hemorrhage (IVH) growth, significantly affects outcomes in patients with intracerebral hemorrhage (ICH). This study aimed to develop, validate, and interpret a deep learning model, HENet, for predicting three definitions of HE. Using CT scans and clinical data from 718 ICH patients across three hospitals, the multicenter retrospective study focused on revised hematoma expansion (RHE) definitions 1 and 2, and conventional HE (CHE). HENet's performance was compared with 2D models and physician predictions using two external validation sets. Results showed that HENet achieved high AUC values for RHE1, RHE2, and CHE predictions, surpassing physicians' predictions and 2D models in net reclassification index and integrated discrimination index for RHE1 and RHE2 outcomes. The Grad-CAM technique provided visual insights into the model's decision-making process. These findings suggest that integrating HENet into clinical practice could improve prediction accuracy and patient outcomes in ICH cases.
血肿扩大(HE),包括脑室内出血(IVH)的进展,对脑出血(ICH)患者的预后有显著影响。本研究旨在开发、验证并阐释一种深度学习模型HENet,用于预测HE的三种定义。这项多中心回顾性研究利用来自三家医院的718例ICH患者的CT扫描和临床数据,重点关注修订后的血肿扩大(RHE)定义1和2以及传统血肿扩大(CHE)。使用两个外部验证集,将HENet的性能与二维模型和医生的预测进行了比较。结果显示,HENet在预测RHE1、RHE2和CHE方面取得了较高的AUC值,在RHE1和RHE2结果的净重新分类指数和综合判别指数方面超过了医生的预测和二维模型。Grad-CAM技术为模型的决策过程提供了可视化见解。这些发现表明,将HENet整合到临床实践中可以提高ICH病例的预测准确性和患者预后。