Suppr超能文献

用于预测血肿扩大(包括脑室内出血增长)的基于CT的可解释深度学习模型。

Explainable CT-based deep learning model for predicting hematoma expansion including intraventricular hemorrhage growth.

作者信息

Zhao Xianjing, Zhang Zhengxiang, Shui Juntao, Xu Hui, Yang Yulong, Zhu Lequn, Chen Lei, Chang Shixin, Du Chunzhong, Yao Zhenwei, Fang Xiangming, Shi Lei

机构信息

Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.

Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

出版信息

iScience. 2025 Jun 13;28(7):112888. doi: 10.1016/j.isci.2025.112888. eCollection 2025 Jul 18.

Abstract

Hematoma expansion (HE), including intraventricular hemorrhage (IVH) growth, significantly affects outcomes in patients with intracerebral hemorrhage (ICH). This study aimed to develop, validate, and interpret a deep learning model, HENet, for predicting three definitions of HE. Using CT scans and clinical data from 718 ICH patients across three hospitals, the multicenter retrospective study focused on revised hematoma expansion (RHE) definitions 1 and 2, and conventional HE (CHE). HENet's performance was compared with 2D models and physician predictions using two external validation sets. Results showed that HENet achieved high AUC values for RHE1, RHE2, and CHE predictions, surpassing physicians' predictions and 2D models in net reclassification index and integrated discrimination index for RHE1 and RHE2 outcomes. The Grad-CAM technique provided visual insights into the model's decision-making process. These findings suggest that integrating HENet into clinical practice could improve prediction accuracy and patient outcomes in ICH cases.

摘要

血肿扩大(HE),包括脑室内出血(IVH)的进展,对脑出血(ICH)患者的预后有显著影响。本研究旨在开发、验证并阐释一种深度学习模型HENet,用于预测HE的三种定义。这项多中心回顾性研究利用来自三家医院的718例ICH患者的CT扫描和临床数据,重点关注修订后的血肿扩大(RHE)定义1和2以及传统血肿扩大(CHE)。使用两个外部验证集,将HENet的性能与二维模型和医生的预测进行了比较。结果显示,HENet在预测RHE1、RHE2和CHE方面取得了较高的AUC值,在RHE1和RHE2结果的净重新分类指数和综合判别指数方面超过了医生的预测和二维模型。Grad-CAM技术为模型的决策过程提供了可视化见解。这些发现表明,将HENet整合到临床实践中可以提高ICH病例的预测准确性和患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/437d/12246629/c1c90f750d93/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验