Suppr超能文献

一种用于脑出血血肿容量检测的稳健深度学习分割方法。

A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage.

机构信息

Department of Artificial Intelligence, School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, China (N.Y., H.Y.).

Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, China (H.L., J.W.).

出版信息

Stroke. 2022 Jan;53(1):167-176. doi: 10.1161/STROKEAHA.120.032243. Epub 2021 Oct 4.

Abstract

BACKGROUND AND PURPOSE

Hematoma volume (HV) is a significant diagnosis for determining the clinical stage and therapeutic approach for intracerebral hemorrhage (ICH). The aim of this study is to develop a robust deep learning segmentation method for the fast and accurate HV analysis using computed tomography.

METHODS

A novel dimension reduction UNet (DR-UNet) model was developed for computed tomography image segmentation and HV measurement. Two data sets, 512 ICH patients with 12 568 computed tomography slices in the retrospective data set and 50 ICH patients with 1257 slices in the prospective data set, were used for network training, validation, and internal and external testing. Moreover, 13 irregular hematoma cases, 11 subdural and epidural hematoma cases, and 50 different HV cases into 3 groups (<30, 30-60, and >60 mL) were selected to further evaluate the robustness of DR-UNet. The image segmentation performance of DR-UNet was compared with those of UNet, the fuzzy clustering method, and the active contour method. The HV measurement performance was compared using DR-UNet, UNet, and the Coniglobus formula method.

RESULTS

Using DR-UNet, the segmentation model achieved a performance similar to that of expert clinicians in 2 independent test data sets containing internal testing data (Dice of 0.861±0.139) and external testing data (Dice of 0.874±0.130). The HV measurement derived from DR-UNet was strongly correlated with that from manual segmentation (R=0.9979; <0.0001). In the irregularly shaped hematoma group and the subdural and epidural hematoma group, DR-UNet was more robust than UNet in both hematoma segmentation and HV measurement. There is no statistical significance in segmentation accuracy among 3 different HV groups.

CONCLUSIONS

DR-UNet can segment hematomas from the computed tomography scans of ICH patients and quantify the HV with better accuracy and greater efficiency than the main existing methods and with similar performance to expert clinicians. Due to robust performance and stable segmentation on different ICHs, DR-UNet could facilitate the development of deep learning systems for a variety of clinical applications.

摘要

背景与目的

血肿量(HV)是确定颅内出血(ICH)临床分期和治疗方法的重要诊断指标。本研究旨在开发一种强大的深度学习分割方法,用于快速准确地分析 CT 图像中的 HV。

方法

开发了一种新的降维 U-Net(DR-UNet)模型,用于 CT 图像分割和 HV 测量。该模型使用了两个数据集,一个是回顾性数据集,包含 512 例 ICH 患者的 12568 张 CT 切片;另一个是前瞻性数据集,包含 50 例 ICH 患者的 1257 张 CT 切片。该模型用于网络训练、验证和内部及外部测试。此外,还选择了 13 例不规则血肿、11 例硬膜下和硬膜外血肿以及 50 例不同 HV 病例,将其分为 3 组(<30、30-60 和 >60 mL),进一步评估 DR-UNet 的稳健性。将 DR-UNet 的图像分割性能与 U-Net、模糊聚类方法和主动轮廓方法进行比较。使用 DR-UNet、U-Net 和 Coniglobus 公式方法比较 HV 测量性能。

结果

使用 DR-UNet,在包含内部测试数据(Dice 值为 0.861±0.139)和外部测试数据(Dice 值为 0.874±0.130)的两个独立测试数据集中,该分割模型的性能与专家临床医生相似。DR-UNet 得出的 HV 测量值与手动分割高度相关(R=0.9979;<0.0001)。在形状不规则血肿组和硬膜下及硬膜外血肿组中,DR-UNet 在血肿分割和 HV 测量方面比 U-Net 更稳健。在 3 个不同 HV 组中,分割准确性没有统计学意义。

结论

DR-UNet 可以从 ICH 患者的 CT 扫描中分割血肿,并以比主要现有方法更高的准确性和效率定量 HV,其性能与专家临床医生相似。由于在不同的 ICH 上具有稳健的性能和稳定的分割,DR-UNet 可以促进深度学习系统在各种临床应用中的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验