Suppr超能文献

支气管肺发育不良的临床特征及通过机器学习模型预测脓毒症发病风险

Clinical characteristics of bronchopulmonary dysplasia and the risk of sepsis onset prediction via machine learning models.

作者信息

Wang Yanhua, Wang Yi, Song Linhong, Li Jun, Xie Yuanyuan, Yan Lei, Hu Siqi, Feng Zhichun

机构信息

The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.

Institute of Pediatrics, Faculty of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.

出版信息

Front Pediatr. 2025 Jun 27;13:1566747. doi: 10.3389/fped.2025.1566747. eCollection 2025.

Abstract

Bronchopulmonary dysplasia (BPD), also known as chronic lung disease, is the most common cause of respiratory morbidity in preterm infants. Sepsis plays a significant role in the pathogenesis of BPD, and the systemic inflammatory response caused by sepsis is associated with lung development, leading to simplified alveoli and abnormal vascular development, which are the histological hallmarks of BPD. In this study, we conducted a retrospective analysis of the clinical characteristics of 306 preterm infants with BPD treated at our hospital from December 2019 to December 2022. We subsequently utilized ten machine learning (ML) algorithms and used clinical features to acquire models to predict BPD with sepsis. The performance of the model was evaluated according to the mean area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. The mean area under the curve (AUC) of the best predictive model was 0.93. A nomogram for sepsis onset was developed in the primary cohort with four factors: invasive respiratory support, CRIB II score, NEC, and chorioamnionitis. By including clinical features, ML algorithms can predict BPD with sepsis, and the random forest (RF) model (sorted by the mean AUC) performs the best. Our prediction model and nomogram can help clinicians make early diagnoses and formulate better treatment plans for preterm infants with BPD.

摘要

支气管肺发育不良(BPD),也称为慢性肺病,是早产儿呼吸疾病最常见的病因。脓毒症在BPD的发病机制中起重要作用,脓毒症引起的全身炎症反应与肺发育相关,导致肺泡简化和血管发育异常,这是BPD的组织学特征。在本研究中,我们对2019年12月至2022年12月在我院接受治疗的306例BPD早产儿的临床特征进行了回顾性分析。随后,我们使用了十种机器学习(ML)算法,并利用临床特征来获取预测合并脓毒症的BPD的模型。根据受试者操作特征曲线(AUC)下的平均面积、敏感性、特异性和准确性对模型性能进行评估。最佳预测模型的曲线下平均面积(AUC)为0.93。在主要队列中,利用侵入性呼吸支持、CRIB II评分、坏死性小肠结肠炎(NEC)和绒毛膜羊膜炎这四个因素制定了脓毒症发病的列线图。通过纳入临床特征,ML算法可以预测合并脓毒症的BPD,随机森林(RF)模型(按平均AUC排序)表现最佳。我们的预测模型和列线图可以帮助临床医生对BPD早产儿进行早期诊断并制定更好的治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2652/12245775/9edd7c87146d/fped-13-1566747-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验