Kunming Medical University, Kunming, Yunnan, China.
Chengyang District People's Hospital, Qingdao, Shandong, China.
BMC Infect Dis. 2023 Sep 27;23(1):635. doi: 10.1186/s12879-023-08614-0.
Sepsis is a life-threatening condition caused by an abnormal response of the body to infection and imposes a significant health and economic burden worldwide due to its high mortality rate. Early recognition of sepsis is crucial for effective treatment. This study aimed to systematically evaluate the performance of various machine learning models in predicting the onset of sepsis.
We conducted a comprehensive search of the Cochrane Library, PubMed, Embase, and Web of Science databases, covering studies from database inception to November 14, 2022. We used the PROBAST tool to assess the risk of bias. We calculated the predictive performance for sepsis onset using the C-index and accuracy. We followed the PRISMA guidelines for this study.
We included 23 eligible studies with a total of 4,314,145 patients and 26 different machine learning models. The most frequently used models in the studies were random forest (n = 9), extreme gradient boost (n = 7), and logistic regression (n = 6) models. The random forest (test set n = 9, acc = 0.911) and extreme gradient boost (test set n = 7, acc = 0.957) models were the most accurate based on our analysis of the predictive performance. In terms of the C-index outcome, the random forest (n = 6, acc = 0.79) and extreme gradient boost (n = 7, acc = 0.83) models showed the highest performance.
Machine learning has proven to be an effective tool for predicting sepsis at an early stage. However, to obtain more accurate results, additional machine learning methods are needed. In our research, we discovered that the XGBoost and random forest models exhibited the best predictive performance and were most frequently utilized for predicting the onset of sepsis.
CRD42022384015.
败血症是一种危及生命的疾病,由机体对感染的异常反应引起,由于其高死亡率,在全球范围内造成了巨大的健康和经济负担。早期识别败血症至关重要,有助于进行有效的治疗。本研究旨在系统评估各种机器学习模型预测败血症发生的性能。
我们全面检索了 Cochrane 图书馆、PubMed、Embase 和 Web of Science 数据库,检索时间从数据库建立至 2022 年 11 月 14 日。我们使用 PROBAST 工具评估偏倚风险。我们使用 C 指数和准确率来计算败血症发病的预测性能。本研究遵循 PRISMA 指南。
我们纳入了 23 项符合条件的研究,共纳入了 4314145 名患者和 26 种不同的机器学习模型。研究中最常用的模型是随机森林(n=9)、极端梯度提升(n=7)和逻辑回归(n=6)模型。根据我们对预测性能的分析,随机森林(测试集 n=9,acc=0.911)和极端梯度提升(测试集 n=7,acc=0.957)模型的准确率最高。在 C 指数结果方面,随机森林(n=6,acc=0.79)和极端梯度提升(n=7,acc=0.83)模型表现出最高的性能。
机器学习已被证明是一种预测败血症早期发生的有效工具。然而,为了获得更准确的结果,需要采用更多的机器学习方法。在我们的研究中,我们发现 XGBoost 和随机森林模型表现出最好的预测性能,并且最常用于预测败血症的发病。
CRD42022384015。