Suppr超能文献

具有人工智能模型可解释性的智能动态网络安全风险管理框架,用于增强数字基础设施的安全性和弹性。

Intelligent dynamic cybersecurity risk management framework with explainability and interpretability of AI models for enhancing security and resilience of digital infrastructure.

作者信息

Islam Shareeful, Basheer Nihala, Papastergiou Spyridon, Ciampi Mario, Silvestri Stefano

机构信息

School of Computing and Information Science, Anglia Ruskin University, East Road, Cambridge, UK.

Research and Innovation, Maggioli S.p.A., Santarcangelo di Romagna, Italy.

出版信息

J Reliab Intell Environ. 2025;11(3):12. doi: 10.1007/s40860-025-00253-3. Epub 2025 Jul 9.

Abstract

The sophistication of cyberattacks has significantly increased, making it almost certain that organizations can be victims of cyberattacks at any time. Managing cybersecurity risk is critical for any organization so that informed decisions can be made to tackle risks before they materialize. Cybersecurity risk management is context-specific and heavily relies on the specific organization's context. However, performing effective risk management is always challenging due to the constant changes in organizational infrastructure and security posture, including the adoption of new applications and the reconfiguration or updating of existing assets and their dependencies, as well as the potential exploitation of vulnerabilities. Despite the wider adoption of AI enabled cybersecurity risk management, there is a lack of focus on the integration of these systems along with the dynamic elements of the risk management. In this context, this research proposes a novel dynamic cyber security risk management (d-CSRM) framework to tackle this challenge by integrating dynamic parameters such as vulnerability exploitation and assets dependencies for assessing and managing the risk. The framework consists of a systemic process and makes use of a hybrid AI-enabled model that combines both linear regression and deep learning, to prioritize the vulnerabilities. Additionally, d-CSRM integrates the explainability and interpretability characteristics of the AI model for explaining model decision making and the inner working parameters. This allows the extraction of the key features that are linked with the risk and informed decision making to tackle the risks. An experiment was performed to prioritize the vulnerabilities from the widely used CVEjoin dataset using the proposed hybrid model to quantify the dynamic risk with explainability. The results show that the hybrid model effectively identifies and prioritizes the most critical vulnerabilities using the selected key features such as exploit type, exploit platform and impact that can further enhance the dynamic risk assessment.

摘要

网络攻击的复杂性显著增加,这使得几乎可以确定组织随时都可能成为网络攻击的受害者。对任何组织来说,管理网络安全风险都至关重要,以便在风险出现之前做出明智的决策来应对风险。网络安全风险管理是特定于上下文的,并且严重依赖于特定组织的情况。然而,由于组织基础设施和安全态势的不断变化,包括采用新应用程序、重新配置或更新现有资产及其依赖关系,以及潜在的漏洞利用,进行有效的风险管理始终具有挑战性。尽管人工智能支持的网络安全风险管理得到了更广泛的应用,但缺乏对这些系统与风险管理动态要素整合的关注。在此背景下,本研究提出了一种新颖的动态网络安全风险管理(d-CSRM)框架,通过整合漏洞利用和资产依赖关系等动态参数来评估和管理风险,以应对这一挑战。该框架由一个系统流程组成,并利用一种结合了线性回归和深度学习的混合人工智能模型来对漏洞进行优先级排序。此外,d-CSRM整合了人工智能模型的可解释性和可诠释性特征,以解释模型决策和内部工作参数。这使得能够提取与风险相关的关键特征,并做出明智的决策来应对风险。使用所提出的混合模型对广泛使用的CVEjoin数据集的漏洞进行优先级排序,以量化具有可解释性的动态风险,进行了一项实验。结果表明,该混合模型利用诸如利用类型、利用平台和影响等选定的关键特征,有效地识别了最关键的漏洞并对其进行了优先级排序,这可以进一步增强动态风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3958/12241235/ac23d400cb91/40860_2025_253_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验