Suppr超能文献

基于机器学习的医疗保健生态系统网络威胁和漏洞的 NLP 分析方法。

A Machine Learning Approach for the NLP-Based Analysis of Cyber Threats and Vulnerabilities of the Healthcare Ecosystem.

机构信息

Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy.

School of Computing and Information Science, Anglia Ruskin University, Cambridge CB1 1PT, UK.

出版信息

Sensors (Basel). 2023 Jan 6;23(2):651. doi: 10.3390/s23020651.

Abstract

Digitization in healthcare systems, with the wid adoption of Electronic Health Records, connected medical devices, software and systems providing efficient healthcare service delivery and management. On the other hand, the use of these systems has significantly increased cyber threats in the healthcare sector. Vulnerabilities in the existing and legacy systems are one of the key causes for the threats and related risks. Understanding and addressing the threats from the connected medical devices and other parts of the ICT health infrastructure are of paramount importance for ensuring security within the overall healthcare ecosystem. Threat and vulnerability analysis provides an effective way to lower the impact of risks relating to the existing vulnerabilities. However, this is a challenging task due to the availability of massive data which makes it difficult to identify potential patterns of security issues. This paper contributes towards an effective threats and vulnerabilities analysis by adopting Machine Learning models, such as the BERT neural language model and XGBoost, to extract updated information from the Natural Language documents largely available on the web, evaluating at the same time the level of the identified threats and vulnerabilities that can impact on the healthcare system, providing the required information for the most appropriate management of the risk. Experiments were performed based on CS news extracted from the Hacker News website and on Common Vulnerabilities and Exposures (CVE) vulnerability reports. The results demonstrate the effectiveness of the proposed approach, which provides a realistic manner to assess the threats and vulnerabilities from Natural Language texts, allowing adopting it in real-world Healthcare ecosystems.

摘要

医疗系统中的数字化,随着电子健康记录的广泛采用、连接的医疗设备、软件和系统,提供了高效的医疗服务交付和管理。另一方面,这些系统的使用大大增加了医疗保健领域的网络威胁。现有和遗留系统中的漏洞是威胁和相关风险的关键原因之一。了解和应对连接的医疗设备和其他信息通信技术医疗基础设施部分的威胁对于确保整个医疗生态系统的安全性至关重要。威胁和漏洞分析提供了一种降低与现有漏洞相关风险影响的有效方法。然而,由于存在大量数据,这使得识别潜在安全问题模式变得困难,因此这是一项具有挑战性的任务。本文通过采用机器学习模型(如 BERT 神经语言模型和 XGBoost)从网络上大量可用的自然语言文档中提取更新信息,为有效的威胁和漏洞分析做出了贡献,同时评估可能影响医疗系统的已识别威胁和漏洞的级别,为风险的最适当管理提供所需信息。实验是基于从黑客新闻网站提取的 CS 新闻和常见漏洞和暴露 (CVE) 漏洞报告进行的。结果表明,该方法有效,为从自然语言文本评估威胁和漏洞提供了一种现实的方式,允许将其应用于实际的医疗保健生态系统中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a83/9866080/f58b00c0e3d9/sensors-23-00651-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验