Sur Amit K, Nyayachavadi Audithya, Kulatunga Piumi, Li Nien-Jung, Chiu Yu-Cheng, Rondeau-Gagné Simon
Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
Department of Chemical Engineering, National Taiwan University of Science and Technology Taipei 106 Taiwan.
RSC Adv. 2025 Jul 10;15(30):24142-24149. doi: 10.1039/d5ra02367j.
Semiconducting polymers have emerged as versatile, tunable materials for next-generation optoelectronic devices, offering advantages over traditional inorganic semiconductors in applications from energy harvesting to bioelectronics. Particularly, their compatibility with scalable manufacturing techniques, including solution-based deposition and printing methods, positions them favorably for commercial adoption. Among the recent strategies used to enhance the mechanical, thermal, and electronic properties of these polymers, crosslinking-through covalent or non-covalent interactions-has been shown to be especially efficient for improving their stability, robustness, and functionality. Notably, crosslinking can also confer solvent resistance to these materials, a crucial feature for multilayer device fabrication that can help to maintain layer integrity during sequential printing processes. In this work, we synthesized a diketopyrrolopyrrole-carbazole conjugated copolymer functionalized with 1,3-butadiyne groups on the carbazole side chains, enabling covalent crosslinking UV-induced topochemical polymerization into polydiacetylene (PDA) networks. Raman spectroscopy confirmed PDA crosslink formation, while atomic force microscopy and grazing incidence wide-angle X-ray scattering were used to demonstrate the preservation of polymer film morphology post-crosslinking. Quantitative nanomechanical mapping revealed significant enhancements in mechanical properties upon PDA formation. Additionally, sequential deposition and crosslinking cycles demonstrated the robust solvent resistance of crosslinked films, confirmed by UV-vis spectroscopy. These results highlight topochemical polymerization of diacetylenes as an effective strategy for engineering mechanically robust, solvent-resistant conjugated polymer films suitable for advanced multilayer organic electronics.
半导体聚合物已成为用于下一代光电器件的多功能、可调节材料,在从能量收集到生物电子学的应用中比传统无机半导体具有优势。特别是,它们与可扩展制造技术的兼容性,包括基于溶液的沉积和印刷方法,使其在商业应用中具有有利地位。在最近用于增强这些聚合物的机械、热和电子性能的策略中,通过共价或非共价相互作用进行交联已被证明在提高其稳定性、坚固性和功能性方面特别有效。值得注意的是,交联还可以赋予这些材料耐溶剂性,这是多层器件制造的一个关键特性,有助于在连续印刷过程中保持层的完整性。在这项工作中,我们合成了一种在咔唑侧链上用1,3 - 丁二炔基团官能化的二酮吡咯并吡咯 - 咔唑共轭共聚物,通过紫外光诱导的拓扑化学聚合形成聚二乙炔(PDA)网络实现共价交联。拉曼光谱证实了PDA交联的形成,而原子力显微镜和掠入射广角X射线散射用于证明交联后聚合物膜形态的保留。定量纳米力学映射显示形成PDA后机械性能有显著增强。此外,连续的沉积和交联循环证明了交联膜具有强大的耐溶剂性,这通过紫外 - 可见光谱得到证实。这些结果突出了二乙炔的拓扑化学聚合作为一种有效策略,可用于设计适用于先进多层有机电子学的机械坚固、耐溶剂的共轭聚合物膜。