Freudenberg Jan, Jänsch Daniel, Hinkel Felix, Bunz Uwe H F
Organisch-Chemisches Institut and Centre of Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 225 and 270 , 69120 Heidelberg , FRG.
InnovationLab, Speyerer Str. 4 , 69115 Heidelberg , FRG.
Chem Rev. 2018 Jun 13;118(11):5598-5689. doi: 10.1021/acs.chemrev.8b00063. Epub 2018 May 30.
This Review details synthetic routes toward and properties of insoluble polymeric organic semiconductors obtained through desolubilization strategies. Typical applications include fixation of donor-acceptor bulk-heterojunction morphologies in organic photovoltaic cells, cross-linking of charge transport materials and active emitters in light emitting diodes or similar devices, and immobilization of morphologies in field effect transistors. A second important application is the structuring of organic semiconductors, using them as photoresists. After desolubilization, removal of the nonirradiated resist leads to elevated, micron-sized features of the semiconductor. In this Review, different strategies for desolubilization are covered. By photochemical or thermal cleavage of solubility-mediating groups such as esters, sulfonium salts, amides, ethers, and acetals or by retro-Diels-Alder reactions, volatile elimination products and the insoluble semiconductor are formed. In another case, desolubilization is achieved by cross-linking via functional groups present in the polymer side chains including vinyl, halide, silicone, boronic acid, and azide functionalities, which polymerize thermally or photochemically. Alternatively, small molecular additives such as photoacids, oligothiols, or oligoazides result in network formation in combination with compatible functional groups present in the immobilizable polymers. Advantages and disadvantages of the respective methods are discussed.
本综述详细介绍了通过去溶解策略获得的不溶性聚合物有机半导体的合成路线及其性质。典型应用包括在有机光伏电池中固定供体-受体体相异质结形态、在发光二极管或类似器件中使电荷传输材料和有源发射体交联,以及在场效应晶体管中固定形态。第二个重要应用是将有机半导体用作光致抗蚀剂来构建结构。去溶解后,去除未辐照的抗蚀剂会形成微米级的半导体凸起特征。在本综述中,涵盖了不同的去溶解策略。通过光化学或热裂解诸如酯、锍盐、酰胺、醚和缩醛等溶解性介导基团,或者通过逆狄尔斯-阿尔德反应,会形成挥发性消除产物和不溶性半导体。在另一种情况下,通过聚合物侧链中存在的官能团(包括乙烯基、卤化物、硅氧烷、硼酸和叠氮化物官能团)进行交联来实现去溶解,这些官能团会发生热聚合或光聚合。或者,小分子添加剂如光酸、寡硫醇或寡叠氮化物与可固定聚合物中存在的相容官能团结合会导致网络形成。讨论了各方法的优缺点。