Piriyakulkij Wasu Top, Wang Yingheng, Kuleshov Volodymyr
Department of Computer Science, Cornell University.
The Jacobs Technion-Cornell Institute, Cornell Tech.
Proc AAAI Conf Artif Intell. 2025;39(19):19921-19930. doi: 10.1609/aaai.v39i19.34194. Epub 2025 Apr 11.
We propose denoising diffusion variational inference (DDVI), a black-box variational inference algorithm for latent variable models which relies on diffusion models as flexible approximate posteriors. Specifically, our method introduces an expressive class of diffusion-based variational posteriors that perform iterative refinement in latent space; we train these posteriors with a novel regularized evidence lower bound (ELBO) on the marginal likelihood inspired by the wake-sleep algorithm. Our method is easy to implement (it fits a regularized extension of the ELBO), is compatible with black-box variational inference, and outperforms alternative classes of approximate posteriors based on normalizing flows or adversarial networks. We find that DDVI improves inference and learning in deep latent variable models across common benchmarks as well as on a motivating task in biology-inferring latent ancestry from human genomes-where it outperforms strong baselines on 1000 Genomes dataset.
我们提出了去噪扩散变分推理(DDVI),这是一种用于潜变量模型的黑箱变分推理算法,它依赖于扩散模型作为灵活的近似后验分布。具体而言,我们的方法引入了一类基于扩散的富有表现力的变分后验分布,它们在潜空间中进行迭代细化;我们使用受唤醒-睡眠算法启发的关于边际似然的新型正则化证据下界(ELBO)来训练这些后验分布。我们的方法易于实现(它拟合了ELBO的正则化扩展),与黑箱变分推理兼容,并且优于基于归一化流或对抗网络的其他近似后验分布类别。我们发现,DDVI在常见基准测试以及生物学中的一项激励任务——从人类基因组推断潜在祖先——中改进了深度潜变量模型的推理和学习,在1000基因组数据集上它优于强大的基线方法。