Suppr超能文献

在通过全场测量进行参数识别的背景下,从一个微观结构代表性体积元(mCRE)功能中进行模型和网格选择。

Model and mesh selection from a mCRE functional in the context of parameter identification with full-field measurements.

作者信息

Nguyen Hai Nam, Chamoin Ludovic

机构信息

Le Quy Don Technical University, 236 Hoang Quoc Viet Street, Hanoi, 100000 Vietnam.

Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France.

出版信息

Comput Mech. 2025;76(1):251-277. doi: 10.1007/s00466-025-02598-1. Epub 2025 Jan 25.

Abstract

In this paper, we propose a general deterministic framework to question the relevance, assess the quality, and ultimately choose the features (in terms of model class and discretization mesh) of the employed computational mechanics model when performing parameter identification. The goal is to exploit both modeling and data at best, with optimized model accuracy and computational cost governed by the richness of available experimental information. Using the modified Constitutive Relation Error concept based on reliability of information and the construction of optimal admissible fields, we define rigorous quantitative error indicators that point out individual sources of error contained in the identified computational model with regards to (noisy) observations. An associated adaptive strategy is then proposed to automatically select, among a hierarchical list with increasing complexity, some parameterized mathematical model and finite element mesh which are consistent with the content of experimental data. In addition, the approach is computationally enhanced by the complementary use of model reduction techniques and specific nonlinear solvers. We focus here on experimental information given by full-field kinematic measurements, e.g. obtained by means of digital image correlation techniques, even though the proposed strategy would also apply to sparser data. The performance of the approach is analyzed and validated on several numerical experiments dealing with anisotropic linear elasticity or nonlinear elastoplastic models, and using synthetic or real observations.

摘要

在本文中,我们提出了一个通用的确定性框架,用于在进行参数识别时,质疑所采用的计算力学模型的相关性、评估其质量,并最终选择其特征(在模型类别和离散化网格方面)。目标是充分利用建模和数据,以优化的模型精度和由可用实验信息的丰富程度决定的计算成本。基于信息可靠性和最优容许场的构建,使用改进的本构关系误差概念,我们定义了严格的定量误差指标,这些指标指出了已识别的计算模型中相对于(有噪声的)观测值所含的各个误差源。然后提出了一种相关的自适应策略,以便在复杂度不断增加的分层列表中自动选择一些与实验数据内容一致的参数化数学模型和有限元网格。此外,通过补充使用模型降阶技术和特定的非线性求解器,该方法在计算上得到了增强。尽管所提出的策略也适用于更稀疏的数据,但我们在此重点关注全场运动测量给出的实验信息,例如通过数字图像相关技术获得的信息。在处理各向异性线弹性或非线性弹塑性模型的几个数值实验中,使用合成或真实观测数据对该方法的性能进行了分析和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cda/12241245/389fb9636ba3/466_2025_2598_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验