Suppr超能文献

上皮细胞单层的细胞外电化学阻抗谱方法。

Method for Extracellular Electrochemical Impedance Spectroscopy on Epithelial Cell Monolayers.

作者信息

Chien Athena J, Lewallen Colby F, Khor Hanna, Cegla Analia Vazquez, Guo Rongming, Watson Adrienne L, Hatcher Chris, McCarty Nael A, Bharti Kapil, Forest Craig R

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Bio Protoc. 2025 Jun 20;15(12):e5341. doi: 10.21769/BioProtoc.5341.

Abstract

Epithelial tissues form barriers to the flow of ions, nutrients, waste products, bacteria, and viruses. The conventional electrophysiology measurement of transepithelial resistance (TEER/TER) can quantify epithelial barrier integrity, but does not capture all the electrical behavior of the tissue or provide insight into membrane-specific properties. Electrochemical impedance spectroscopy, in addition to measurement of TER, enables measurement of transepithelial capacitance (TEC) and a ratio of electrical time constants for the tissue, which we term the membrane ratio. This protocol describes how to perform galvanostatic electrochemical impedance spectroscopy on epithelia using commercially available cell culture inserts and chambers, detailing the apparatus, electrical signal, fitting technique, and error quantification. The measurement can be performed in under 1 min on commercially available cell culture inserts and electrophysiology chambers using instrumentation capable of galvanostatic sinusoidal signal processing (4 μA amplitude, 2 Hz to 50 kHz). All fits to the model have less than 10 Ω mean absolute error, revealing repeatable values distinct for each cell type. On representative retinal pigment (n = 3) and bronchiolar epithelial samples (n = 4), TER measurements were 500-667 Ω·cm and 955-1,034 Ω·cm (within the expected range), TEC measurements were 3.65-4.10 μF/cm and 1.07-1.10 μF/cm, and membrane ratio measurements were 18-22 and 1.9-2.2, respectively. Key features • This protocol requires preexisting experience with culturing epithelial cells (such as Caco-2, RPE, and 16HBE) for a successful outcome. • Builds upon methods by Lewallen et al. [1] and Linz et al. [2], integrating commercial chambers and providing a quantitative estimate of error. • Provides code to run measurement, process data, and report error; requires access to MATLAB software, but no coding experience is necessary. • Allows for repeated measurements on the same sample. Graphical overview This data is then fit to an electrical circuit model to output transepithelial resistance (TER), transepithelial capacitance (TEC), and membrane ratio (α) (right).

摘要

上皮组织对离子、营养物质、代谢废物、细菌和病毒的流动形成屏障。传统的跨上皮电阻(TEER/TER)电生理测量可以量化上皮屏障的完整性,但无法捕捉组织的所有电行为,也无法深入了解膜特异性特性。电化学阻抗谱除了测量TER外,还能够测量跨上皮电容(TEC)以及组织的电时间常数之比,我们将其称为膜比。本方案描述了如何使用市售的细胞培养插入物和培养室对上上皮进行恒电流电化学阻抗谱测量,详细介绍了仪器、电信号、拟合技术和误差量化。使用能够进行恒电流正弦信号处理(幅度4 μA,频率2 Hz至50 kHz)的仪器,在市售的细胞培养插入物和电生理培养室上,测量可在1分钟内完成。所有模型拟合的平均绝对误差均小于10 Ω,显示出每种细胞类型都有可重复的独特值。在代表性的视网膜色素上皮样本(n = 3)和细支气管上皮样本(n = 4)上,TER测量值分别为500 - 667 Ω·cm和955 - 1,034 Ω·cm(在预期范围内),TEC测量值分别为3.65 - 4.10 μF/cm和1.07 - 1.10 μF/cm,膜比测量值分别为18 - 22和1.9 - 2.2。关键特性 • 本方案需要预先具备培养上皮细胞(如Caco - 2、RPE和16HBE)的经验才能成功。 • 基于Lewallen等人[1]和Linz等人[2]的方法,整合了商用培养室并提供误差的定量估计。 • 提供运行测量、处理数据和报告误差的代码;需要使用MATLAB软件,但无需编码经验。 • 允许对同一样本进行重复测量。图形概述 然后将该数据拟合到一个电路模型中,以输出跨上皮电阻(TER)、跨上皮电容(TEC)和膜比(α)(右图)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12254589/1bee3ffb27db/BioProtoc-15-12-5341-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验