Defferriere Thomas, Tuller Harry L
Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
MRS Commun. 2025;15(3):523-532. doi: 10.1557/s43579-025-00726-9. Epub 2025 May 13.
Optoionics, involving light-modulated ionic transport in ionic solids, parallels optoelectronics in semiconductors and offers novel device design opportunities across various fields. Among these opportunities, grain boundary phenomena related to radiation-induced electron/hole pair generation and charge trapping at the boundaries causing a modulation in ionic current could enable fast, sensitive, and reversible radiation detectors. The robustness of ionic solids in chemical, structural, and thermal aspects in turn makes them scalable and robust alternatives to traditional semiconductor detectors. This article explores the theoretical underpinnings, experimental breakthroughs, and design considerations needed to optimize such optoionic devices.
光离子学涉及离子固体中的光调制离子传输,与半导体中的光电子学类似,并在各个领域提供了新颖的器件设计机会。在这些机会中,与辐射诱导的电子/空穴对产生以及边界处的电荷俘获相关的晶界现象会导致离子电流的调制,从而能够实现快速、灵敏且可逆的辐射探测器。离子固体在化学、结构和热方面的稳健性反过来使其成为传统半导体探测器的可扩展且稳健的替代品。本文探讨了优化此类光离子器件所需的理论基础、实验突破和设计考量。