Hamid Mahnoor, Detroja Trishna Saha, Tripathy Shreejoy J, Menon Vilas, Xu Jishu, Yu Lei, Wang Yanling, Buchman Aron S, Bennett David A, De Jager Philip L, Lim Andrew S P
Division of Neurology, Department of Medicine, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada M4N 3M5.
Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada M5S 3K3.
Brain. 2025 Jul 14. doi: 10.1093/brain/awaf161.
Sleep fragmentation is common in older adults and is associated with cognitive impairment and dementia, as well as key histopathological correlates of dementia, including small vessel disease and cerebral infarcts. Vascular and blood-brain barrier dysfunction are thought to contribute to cognitive decline and dementia. Pericytes, a key vascular cell type, may play a key role. In model organisms, sleep disruption is associated with pericyte dysfunction and blood-brain barrier breakdown. Recent advances in single-nucleus RNA sequencing (snRNAseq) technology have identified two transcriptionally distinct subtypes of pericytes: extracellular matrix protein-expressing M-pericytes and solute carrier-expressing T-pericytes. However, the relationship between sleep, pericyte biology and cognition in humans remains unclear. We tested the hypothesis that differences in the composition of brain pericyte subpopulations, as inferred from marker gene expression, may link sleep fragmentation and cognitive decline. We leveraged two published human brain snRNAseq datasets to identify specific marker genes for M- and T-type pericytes. We then used post-mortem bulk RNAseq data from the dorsolateral prefrontal cortex (n = 1092) and lateral orbitofrontal cortex (n = 495) to quantify expression of these marker genes in older adults in two longitudinal cohort studies: the Religious Orders Study and Rush Memory and Aging Project. We derived trajectories of global cognitive function from participants' ante-mortem annual cognitive assessments, while sleep fragmentation was derived from ante-mortem wrist-actigraphy recordings from a subset of 572 participants. We used multivariate linear regression to relate pericyte marker gene expression to sleep fragmentation and cognitive decline in the decade preceding death. In the dorsolateral prefrontal cortex, greater average sleep fragmentation was associated with greater expression of M-pericyte marker genes [estimate = +3.65 × 10-1, standard error (SE) = 1.61 × 10-1, P = 0.024] but not T-pericyte marker genes. Dorsolateral prefrontal cortex expression of M-pericyte (estimate = -8.30 × 10-3, SE = 3.37 × 10-3, P = 0.014) but not T-pericyte marker genes was associated with more rapid cognitive decline in the 10 years prior to death. In the lateral orbitofrontal cortex, greater sleep fragmentation was also associated with greater composite M-pericyte gene expression (estimate = + 4.48 × 10-1, SE = 1.92 × 10-1, P = 0.02), which in turn was associated with faster cognitive decline in the decade preceding death (estimate = -1.30 × 10-2, SE = 4.55 × 10-3, P = 0.0044). These findings identify a potential role of M-pericytes in linking sleep fragmentation and cognitive trajectories in older adults. Additionally, our findings highlight the importance of vascular mechanisms in linking disrupted sleep to dementia.
睡眠碎片化在老年人中很常见,它与认知障碍和痴呆症有关,也与痴呆症的关键组织病理学相关因素有关,包括小血管疾病和脑梗死。血管和血脑屏障功能障碍被认为是导致认知能力下降和痴呆症的原因。周细胞是一种关键的血管细胞类型,可能起着关键作用。在模式生物中,睡眠中断与周细胞功能障碍和血脑屏障破坏有关。单核RNA测序(snRNAseq)技术的最新进展已经确定了周细胞的两种转录不同的亚型:表达细胞外基质蛋白的M-周细胞和表达溶质载体的T-周细胞。然而,睡眠、周细胞生物学与人类认知之间的关系仍不清楚。我们检验了这样一个假设,即从标记基因表达推断出的脑周细胞亚群组成差异可能将睡眠碎片化与认知能力下降联系起来。我们利用两个已发表的人类脑snRNAseq数据集来确定M型和T型周细胞的特定标记基因。然后,我们使用来自背外侧前额叶皮质(n = 1092)和外侧眶额皮质(n = 495)的死后批量RNAseq数据,在两项纵向队列研究中量化这些标记基因在老年人中的表达:宗教团体研究和拉什记忆与衰老项目。我们从参与者生前的年度认知评估中得出全球认知功能的轨迹,而睡眠碎片化则来自572名参与者子集的生前手腕活动记录。我们使用多元线性回归将周细胞标记基因表达与死亡前十年的睡眠碎片化和认知能力下降联系起来。在背外侧前额叶皮质中,平均睡眠碎片化程度越高,M-周细胞标记基因的表达就越高[估计值 = +3.65 × 10-1,标准误差(SE) = 1.61 × 10-1,P = 0.024],但与T-周细胞标记基因无关。背外侧前额叶皮质中M-周细胞的表达(估计值 = -8.30 × 10-3,SE = 3.37 × 10-3,P = 0.014)而非T-周细胞标记基因与死亡前10年认知能力下降更快有关。在外侧眶额皮质中,更高的睡眠碎片化也与更高的复合M-周细胞基因表达有关(估计值 = + 4.48 × 10-1,SE = 1.92 × 10-1,P = 0.02),这反过来又与死亡前十年更快的认知能力下降有关(估计值 = -1.30 × 10-2,SE = 4.55 × 10-3,P = 0.0044)。这些发现确定了M-周细胞在将老年人睡眠碎片化与认知轨迹联系起来方面的潜在作用。此外,我们的发现突出了血管机制在将睡眠中断与痴呆症联系起来方面的重要性。