Hao Dapeng, Tang Limin, Li Da, Miao Sheng, Dong Cheng, Cui Jiufa, Gao Chuanping, Li Jie
Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
Qingdao Women and Children's Hospital, Qingdao, China.
Pediatr Radiol. 2025 Jul 14. doi: 10.1007/s00247-025-06332-0.
The objective and reliable quantification of adenoid size is pivotal for precise clinical diagnosis and the formulation of effective treatment strategies. Conventional manual measurement techniques, however, are often labor-intensive and time-consuming.
To develop and validate a fully automated system for measuring adenoid size using deep learning (DL) on lateral head and neck radiographs.
In this retrospective study, we analyzed 711 lateral head and neck radiographs collected from two centers between February and July 2023. A DL-based adenoid size measurement system was developed, utilizing Fujioka's method. The system employed the RTMDet network and RTMPose networks for accurate landmark detection, and mathematical formulas were applied to determine adenoid size. To evaluate consistency and reliability of the system, we employed the intra-class correlation coefficient (ICC), mean absolute difference (MAD), and Bland-Altman plots as key assessment metrics.
The DL-based system exhibited high reliability in the prediction of adenoid, nasopharynx, and adenoid-nasopharyngeal ratio measurements, showcasing strong agreement with the reference standard. The results indicated an ICC for adenoid measurements of 0.902 [95%CI, 0.872-0.925], with a MAD of 1.189 and a root mean square (RMS) of 1.974. For nasopharynx measurements, the ICC was 0.868 [95%CI, 0.828-0.899], with a MAD of 1.671 and an RMS of 1.916. Additionally, the adenoid-nasopharyngeal ratio measurements yielded an ICC of 0.911 [95%CI, 0.883-0.932], a MAD of 0.054, and an RMS of 0.076.
The developed DL-based system effectively automates the measurement of the adenoid-nasopharyngeal ratio, adenoid, and nasopharynx on lateral neck or head radiographs, showcasing high reliability.
腺样体大小的客观可靠量化对于精确的临床诊断和有效治疗策略的制定至关重要。然而,传统的手动测量技术往往 labor-intensive 且耗时。
开发并验证一种基于深度学习(DL)的用于在头部和颈部侧位 X 光片上测量腺样体大小的全自动系统。
在这项回顾性研究中,我们分析了 2023 年 2 月至 7 月期间从两个中心收集的 711 张头部和颈部侧位 X 光片。利用藤冈方法开发了一种基于 DL 的腺样体大小测量系统。该系统采用 RTMDet 网络和 RTMPose 网络进行精确的地标检测,并应用数学公式来确定腺样体大小。为了评估该系统的一致性和可靠性,我们采用组内相关系数(ICC)、平均绝对差(MAD)和 Bland-Altman 图作为关键评估指标。
基于 DL 的系统在腺样体、鼻咽部以及腺样体-鼻咽部比值测量的预测中表现出高可靠性,与参考标准显示出高度一致性。结果表明,腺样体测量的 ICC 为 0.902 [95%CI,0.872 - 0.925],MAD 为 1.189,均方根(RMS)为 1.974。对于鼻咽部测量,ICC 为 0.868 [95%CI,0.828 - 0.899],MAD 为 1.671,RMS 为 1.916。此外,腺样体-鼻咽部比值测量的 ICC 为 0.911 [95%CI,0.883 - 0.932],MAD 为 0.054,RMS 为 0.076。
所开发的基于 DL 的系统有效地实现了对颈部或头部侧位 X 光片上腺样体-鼻咽部比值、腺样体和鼻咽部的测量自动化,显示出高可靠性。