文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自然语言处理与国际疾病分类编码在构建跌倒损伤患者登记册中的性能:回顾性分析

Performance of Natural Language Processing versus International Classification of Diseases Codes in Building Registries for Patients With Fall Injury: Retrospective Analysis.

作者信息

Taseh Atta, Sasanfar Souri, Chan Michelle, Sirls Evan, Nazarian Ara, Batmanghelich Kayhan, Bean Jonathan F, Ashkani-Esfahani Soheil

机构信息

Foot & Ankle Research and Innovations Laboratory (FARIL), Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, 158 Boston Post Road, Weston, MA, 02493, United States, 1 7818279613.

Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.

出版信息

JMIR Med Inform. 2025 Jul 14;13:e66973. doi: 10.2196/66973.


DOI:10.2196/66973
PMID:40658984
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12279314/
Abstract

BACKGROUND: Standardized registries, such as the International Classification of Diseases (ICD) codes, are commonly built using administrative codes assigned to patient encounters. However, patients with fall injury are often coded using subsequent injury codes, such as hip fractures. This necessitates manual screening to ensure the accuracy of data registries. OBJECTIVE: This study aimed to automate the extraction of fall incidents and mechanisms using natural language processing (NLP) and compare this approach with the ICD method. METHODS: Clinical notes for patients with fall-induced hip fractures were retrospectively reviewed by medical experts. Fall incidences were detected, annotated, and classified among patients who had a fall-induced hip fracture (case group). The control group included patients with hip fractures without any evidence of falls. NLP models were developed using the annotated notes of the study groups to fulfill two separate tasks: fall occurrence detection and fall mechanism classification. The performances of the models were compared using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and area under the receiver operating characteristic curve. RESULTS: A total of 1769 clinical notes were included in the final analysis for the fall occurrence task, and 783 clinical notes were analyzed for the fall mechanism classification task. The highest F1-score using NLP for fall occurrence was 0.97 (specificity=0.96; sensitivity=0.97), and for fall mechanism classification was 0.61 (specificity=0.56; sensitivity=0.62). Natural language processing could detect up to 98% of the fall occurrences and 65% of the fall mechanisms accurately, compared to 26% and 12%, respectively, by ICD codes. CONCLUSIONS: Our findings showed promising performance with higher accuracy of NLP algorithms compared to the conventional method for detecting fall occurrence and mechanism in developing disease registries using clinical notes. Our approach can be introduced to other registries that are based on large data and are in need of accurate annotation and classification.

摘要

背景:标准化登记系统,如国际疾病分类(ICD)编码,通常是使用分配给患者就诊的管理代码构建的。然而,跌倒受伤患者通常使用后续的损伤代码进行编码,如髋部骨折。这就需要人工筛查以确保数据登记的准确性。 目的:本研究旨在使用自然语言处理(NLP)自动提取跌倒事件及机制,并将该方法与ICD方法进行比较。 方法:医学专家对跌倒导致髋部骨折患者的临床记录进行回顾性审查。在跌倒导致髋部骨折的患者(病例组)中检测、标注并分类跌倒发生率。对照组包括无任何跌倒证据的髋部骨折患者。利用研究组的标注记录开发NLP模型,以完成两项独立任务:跌倒发生检测和跌倒机制分类。使用准确率、灵敏度、特异度、阳性预测值、阴性预测值、F1分数和受试者工作特征曲线下面积比较模型性能。
结果:最终分析纳入了1769份用于跌倒发生任务的临床记录,783份用于跌倒机制分类任务的临床记录。使用NLP进行跌倒发生检测的最高F1分数为0.97(特异度=0.96;灵敏度=0.97),跌倒机制分类为0.61(特异度=0.56;灵敏度=0.62)。与ICD编码分别为26%和12%相比,自然语言处理能够准确检测高达98%的跌倒发生率和65%的跌倒机制。
结论:我们的研究结果显示,在使用临床记录开发疾病登记系统时,与传统方法相比,NLP算法在检测跌倒发生和机制方面具有更高的准确性,表现出良好的性能。我们的方法可引入到其他基于大数据且需要准确标注和分类的登记系统中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1210/12279314/fcc8616523a8/medinform-v13-e66973-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1210/12279314/fda56facf81a/medinform-v13-e66973-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1210/12279314/c981a2b51ac6/medinform-v13-e66973-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1210/12279314/fcc8616523a8/medinform-v13-e66973-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1210/12279314/fda56facf81a/medinform-v13-e66973-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1210/12279314/c981a2b51ac6/medinform-v13-e66973-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1210/12279314/fcc8616523a8/medinform-v13-e66973-g003.jpg

相似文献

[1]
Performance of Natural Language Processing versus International Classification of Diseases Codes in Building Registries for Patients With Fall Injury: Retrospective Analysis.

JMIR Med Inform. 2025-7-14

[2]
Development and Validation of a Rule-Based Natural Language Processing Algorithm to Identify Falls in Inpatient Records of Older Adults: Retrospective Analysis.

JMIR Aging. 2025-7-8

[3]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[4]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[5]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
De Novo Natural Language Processing Algorithm Accurately Identifies Myxofibrosarcoma From Pathology Reports.

Clin Orthop Relat Res. 2025-1-1

[8]
Validation of administrative health data for the identification of endometriosis diagnosis.

Hum Reprod. 2025-2-1

[9]
Extraction of sleep information from clinical notes of Alzheimer's disease patients using natural language processing.

J Am Med Inform Assoc. 2024-10-1

[10]
Language Models for Multilabel Document Classification of Surgical Concepts in Exploratory Laparotomy Operative Notes: Algorithm Development Study.

JMIR Med Inform. 2025-7-9

本文引用的文献

[1]
BERT-Based Neural Network for Inpatient Fall Detection From Electronic Medical Records: Retrospective Cohort Study.

JMIR Med Inform. 2024-1-30

[2]
Constructing a disease database and using natural language processing to capture and standardize free text clinical information.

Sci Rep. 2023-5-26

[3]
Automated deidentification of radiology reports combining transformer and "hide in plain sight" rule-based methods.

J Am Med Inform Assoc. 2023-1-18

[4]
Administrative Data Use in National Registry Efforts: Blessing or Curse?

J Bone Joint Surg Am. 2022-10-19

[5]
A hybrid model to identify fall occurrence from electronic health records.

Int J Med Inform. 2022-3-7

[6]
Validity of Using Billing Codes From Electronic Health Records to Estimate Skin Cancer Counts.

JAMA Dermatol. 2021-9-1

[7]
Evaluating resampling methods and structured features to improve fall incident report identification by the severity level.

J Am Med Inform Assoc. 2021-7-30

[8]
Trends in Nonfatal Falls and Fall-Related Injuries Among Adults Aged ≥65 Years - United States, 2012-2018.

MMWR Morb Mortal Wkly Rep. 2020-7-10

[9]
Predicting Inpatient Falls Using Natural Language Processing of Nursing Records Obtained From Japanese Electronic Medical Records: Case-Control Study.

JMIR Med Inform. 2020-4-22

[10]
Mechanisms of accidental fall injuries and involved injury factors: a registry-based study.

Inj Epidemiol. 2020-3-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索