Suppr超能文献

一种针对入住专业护理机构接受急性后护理的社区居住老年人的多结局预后模型。

A Multi-Outcome Prognostic Model for Community-Dwelling Older Adults Admitted to Skilled Nursing Facilities for Post-Acute Care.

作者信息

Deardorff W James, Gan Siqi, Jing Bocheng, Boscardin W John, Smith Alexander K, Lee Sei J

机构信息

Division of Geriatrics, University of California, San Francisco, San Francisco, CA, USA.

Division of Geriatrics, University of California, San Francisco, San Francisco, CA, USA; Northern California Institute for Research and Education, San Francisco, CA, USA.

出版信息

J Am Med Dir Assoc. 2025 Sep;26(9):105775. doi: 10.1016/j.jamda.2025.105775. Epub 2025 Jul 24.

Abstract

OBJECTIVES

Nearly 20% of hospitalized older adults are discharged to a skilled nursing facility (SNF) for short-term rehabilitation. Many subsequently experience adverse outcomes, such as hospital readmissions, transitioning to long-term care rather than returning home, or death. To guide shared decision making, we developed a prognostic model for multiple outcomes for older adults admitted to SNFs.

DESIGN

Retrospective cohort study.

SETTING AND PARTICIPANTS

Twenty percent national Medicare sample of community-dwelling older adults aged ≥66 discharged to an SNF after a hospitalization between 2017 and 2019.

METHODS

We predicted 2 outcomes: 6-month all-cause mortality and "successful community discharge" (discharge to the community without subsequent rehospitalization or death within 30 days). Model predictors were pre-specified as age, sex, Elixhauser comorbidity score, hospital length of stay, elective vs urgent/emergency hospitalization, Medicaid status, principal hospital discharge diagnosis, surgical procedures, and hospitalizations in the past year. We used LASSO to reduce the 38 Elixhauser comorbidities to 12 comorbidities and logistic regression to determine separate predictor coefficients for the mortality and successful discharge outcomes. Model performance was assessed by discrimination [concordance statistic (c-statistic)] and calibration (calibration plots). Internal validation was performed via bootstrapping.

RESULTS

The cohort included 523,740 individuals (median age 81, 62% female, 8% Black). Overall, 22% died by 6 months and 54% experienced a successful community discharge. Adjusted odds ratios varied based on outcome (eg, hospital length of stay was a stronger predictor of community discharge than mortality). The optimism-corrected c-statistics for the final model were 0.753 (95% CI, 0.752-0.755) for 6-month mortality and 0.692 (95% CI, 0.691-0.694) for successful community discharge. Calibration plots showed that the model was well calibrated for both outcomes.

CONCLUSIONS AND IMPLICATIONS

In a national sample of older adults, this multi-outcome SNF prognostic model showed good discrimination and calibration. Risk predictions can help guide shared decision making and future planning among SNF clinicians, patients, and caregivers.

摘要

目的

近20%的住院老年人出院后被送往专业护理机构(SNF)进行短期康复治疗。许多人随后会经历不良后果,如再次住院、转至长期护理机构而非回家或死亡。为指导共同决策,我们针对入住SNF的老年人的多种结局开发了一种预后模型。

设计

回顾性队列研究。

设置与参与者

2017年至2019年间,从全国医疗保险样本中抽取20%年龄≥66岁的社区居住老年人,这些老年人在住院后被送往SNF。

方法

我们预测了两个结局:6个月全因死亡率和“成功社区出院”(出院后30天内未再次住院或死亡)。模型预测因素预先设定为年龄、性别、埃利克斯豪泽合并症评分、住院时间、择期与紧急/急诊住院、医疗补助状态、主要医院出院诊断、手术操作以及过去一年的住院次数。我们使用套索回归将38种埃利克斯豪泽合并症减少至12种合并症,并使用逻辑回归确定死亡率和成功出院结局的单独预测系数。通过区分度[一致性统计量(c统计量)]和校准(校准图)评估模型性能。通过自抽样进行内部验证。

结果

该队列包括523,740名个体(中位年龄81岁,62%为女性,8%为黑人)。总体而言,22% 的人在6个月内死亡,54% 的人成功社区出院。调整后的比值比因结局而异(例如,住院时间对社区出院的预测作用比对死亡率的预测作用更强)。最终模型经乐观校正后的c统计量,6个月死亡率为0.753(95%置信区间,0.752 - 0.755),成功社区出院为0.692(95%置信区间,0.691 - 0.694)。校准图显示该模型对两个结局的校准效果良好。

结论与启示

在一个全国性的老年人群样本中,这种多结局SNF预后模型显示出良好的区分度和校准效果。风险预测有助于指导SNF临床医生、患者和护理人员之间的共同决策和未来规划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验