Suppr超能文献

柱状氧化钒的纳米限域几何结构决定了电化学离子嵌入机制、存储位点和扩散路径。

Nanoconfinement Geometry of Pillared VO Determines Electrochemical Ion Intercalation Mechanisms, Storage Sites, and Diffusion Pathways.

作者信息

Karol Jameela, Ogolla Charles O, Sotoudeh Mohsen, Dillenz Manuel, Tobis Maciej, Vollmer Ellen, Malik Yoga T, Zarrabeitia Maider, Groß Axel, Butz Benjamin, Fleischmann Simon

机构信息

Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, Ulm 89081, Germany.

Karlsruhe Institute of Technology (KIT), Karlsruhe 76021, Germany.

出版信息

ACS Nano. 2025 Jul 29;19(29):26904-26919. doi: 10.1021/acsnano.5c08169. Epub 2025 Jul 14.

Abstract

Improving the electrochemical ion intercalation capacity and kinetics in layered host materials is a critical challenge to further develop lithium-ion batteries, as well as emerging cell chemistries based on ions beyond lithium. Modification of the nanoconfining interlayer space within host materials by synthetic pillaring approaches has emerged as a promising strategy; however, the resulting structural properties of host materials, host-pillar interactions as well as associated electrochemical mechanisms remain poorly understood. Herein, we systematically study a series of bilayered VO host materials pillared with alkyldiamines of different lengths, resulting in tunable nanoconfinement geometries with interlayer spacings in the range of 1.0-1.9 nm. The electrochemical Li intercalation capacity is increased from approximately 1.0 to 1.5 Li per VO in expanded host materials due to the stabilization of new storage sites. The intercalation kinetics improve with expansion due to a transition in Li diffusion pathways from 1D to 2D diffusional networks. Operando X-ray diffraction reveals a transition of the intercalation mechanism from solid-solution Li intercalation in VO hosts with small and medium interlayer spacings to solvent cointercalation in VO with the largest interlayer spacing. The work systematically demonstrates the impact of nanoconfinement geometry within bilayered VO on the resulting Li intercalation metrics and mechanisms, providing insights into both the microstructure and associated electrochemistry of pillared materials.

摘要

提高层状主体材料中的电化学离子插层容量和动力学是进一步发展锂离子电池以及基于锂以外离子的新兴电池化学面临的关键挑战。通过合成柱撑方法对主体材料内的纳米限域层间空间进行改性已成为一种有前景的策略;然而,主体材料的结构特性、主体-柱撑相互作用以及相关的电化学机制仍知之甚少。在此,我们系统地研究了一系列用不同长度的烷基二胺柱撑的双层VO主体材料,得到了层间距在1.0 - 1.9 nm范围内的可调纳米限域几何结构。由于新存储位点的稳定,在膨胀的主体材料中,电化学锂插层容量从每VO约1.0 Li增加到1.5 Li。由于锂扩散途径从一维扩散网络转变为二维扩散网络,插层动力学随着膨胀而改善。原位X射线衍射揭示了插层机制从层间距中小的VO主体中的固溶体锂插层转变为层间距最大的VO中的溶剂共插层。这项工作系统地证明了双层VO内纳米限域几何结构对所得锂插层指标和机制的影响,为柱撑材料的微观结构和相关电化学提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a33/12312152/0ebbfd75a4cd/nn5c08169_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验