Zhang Heng, Wang Fei, Jiang Ou, Lin Yilin, Tang Lianfang, Li Ziwei, Ba Rui, Xu Xiaoyan, Mi Hongying
Faculty of Medicine of Kunming University of Science and Technology, Kunming, Yunnan Province, China.
Department of Pediatrics, The Affiliated Hospital of Kunming University of Science and Technology/Yunnan First People's Hospital, Kunming, Yunnan Province, China.
BMJ Paediatr Open. 2025 Jul 13;9(1):e003652. doi: 10.1136/bmjpo-2025-003652.
Bronchopulmonary dysplasia (BPD) is a significant cause of morbidity in preterm infants, yet its development and severity at high altitudes (>1500 m) remain poorly understood. This study aimed to identify altitude-specific risk factors and develop robust, interpretable predictive models for BPD in this unique population.
In this retrospective matched cohort study, 378 preterm infants (<32 weeks gestation, <1500 g birth weight) admitted to a high-altitude (1500 m) NICU(Neonatal Intensive Care Unit) between 2019 and 2023 were analysed. The cohort included 189 BPD cases (91 mild, 61 moderate, 37 severe) and 189 matched controls. Maternal, perinatal and postnatal data were collected. Machine learning models (XGBoost, logistic regression, random forest) were developed and rigorously evaluated using comprehensive performance metrics to predict BPD occurrence and severity. SHAP (SHapley Additive exPlanations) analysis was employed to interpret the best-performing model.
Key risk factors for BPD development included maternal hypertension (OR 2.31, 95% CI 1.56 to 3.42), initial oxygen requirement >30% (OR 3.15, 95% CI 2.13 to 4.65) and lack of exclusive breast milk feeding (OR 1.89, 95% CI 1.28 to 2.79). Severe BPD was independently associated with prolonged invasive ventilation (>7 days) (OR 4.12, 95% CI 2.78 to 6.11), elevated C reactive protein (>10 mg/L) (OR 2.87, 95% CI 1.93 to 4.26) and patent ductus arteriosus (OR 2.53, 95% CI 1.71 to 3.74). Machine learning models demonstrated strong predictive performance; the optimal XGBoost model achieved an area under the curve of 0.89 (95% CI 0.85 to 0.93), an F1 score of 0.82, a Matthews Correlation Coefficient of 0.73 and a balanced accuracy of 0.85. SHAP analysis identified initial FiO2 >30%, mechanical ventilation and maternal hypertension as the top three most influential predictors for the XGBoost model.
This study provides the first comprehensive analysis of BPD risk factors at a specific high altitude and validates effective, interpretable machine learning models for its prediction. These findings highlight the critical importance of altitude-specific adjustments in risk assessment and emphasise the potential for model-guided early interventions to improve outcomes for this vulnerable population.
支气管肺发育不良(BPD)是早产儿发病的重要原因,然而其在高海拔地区(>1500米)的发生发展及严重程度仍知之甚少。本研究旨在确定特定海拔的风险因素,并为这一独特人群的BPD建立强大、可解释的预测模型。
在这项回顾性匹配队列研究中,分析了2019年至2023年间入住高海拔(1500米)新生儿重症监护病房(NICU)的378例早产儿(胎龄<32周,出生体重<1500克)。该队列包括189例BPD病例(91例轻度,61例中度,37例重度)和189例匹配对照。收集了母亲、围产期和产后数据。开发了机器学习模型(XGBoost、逻辑回归、随机森林),并使用综合性能指标进行严格评估,以预测BPD的发生和严重程度。采用SHAP(Shapley加性解释)分析来解释表现最佳的模型。
BPD发生的关键风险因素包括母亲高血压(OR 2.31,95%CI 1.56至3.42)、初始氧需求>30%(OR 3.15,95%CI 2.13至4.65)和非纯母乳喂养(OR 1.89,95%CI 1.28至2.79)。重度BPD与长时间有创通气(>7天)(OR 4.12,95%CI 2.78至6.11)、C反应蛋白升高(>10mg/L)(OR 2.87,95%CI 1.93至4.26)和动脉导管未闭(OR 2.53,95%CI 1.71至3.74)独立相关。机器学习模型表现出强大的预测性能;最佳的XGBoost模型曲线下面积为0.89(95%CI 0.85至0.93),F1分数为0.82,马修斯相关系数为0.73,平衡准确率为0.85。SHAP分析确定初始FiO2>30%、机械通气和母亲高血压是XGBoost模型最具影响力的前三个预测因素。
本研究首次对特定高海拔地区的BPD风险因素进行了全面分析,并验证了用于其预测的有效、可解释的机器学习模型。这些发现突出了在风险评估中进行特定海拔调整的至关重要性,并强调了模型指导的早期干预对改善这一脆弱人群结局的潜力。