Suppr超能文献

基于机器学习优化上流式厌氧污泥床(UASB)反应器处理生活污水时的沼气和甲烷产量

Machine learning-based optimization of biogas and methane yields in UASB reactors for treating domestic wastewater.

作者信息

Kumar Saurabh, Kumar Saurabh, Kumar Divesh Ranjan, Sharma Dayanand, Wipulanusat Warit

机构信息

Research Unit in Climate Change and Sustainability, Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Khlong Nueng, 12120, Pathumthani, Thailand.

Rajasthan State Pollution Control Board, Jhunjhunu, Rajasthan, India.

出版信息

Biodegradation. 2025 Jun 26;36(4):55. doi: 10.1007/s10532-025-10152-2.

Abstract

This study aimed to optimize biogas and methane production from Up-flow anaerobic sludge blanket reactors for treating domestic wastewater using advanced machine learning models-namely, eXtreme Gradient Boosting (XGBoost) and its hybridized form, XGBoost, integrated with particle swarm optimization (XGBoost-PSO). The key operational variables included time, flow rate, chemical oxygen demand (COD), pH, volatile fatty acids, total suspended solids, hydraulic retention time, alkalinity, and the organic loading rate. Empirical data used to train and validate the predictive models were acquired from the sequential treatment of laboratory-prepared low-strength synthetic wastewater and actual municipal wastewater samples. Data was collected from two treatment phases: synthetic wastewater (COD: 335.45 ± 28.32 mg/L) was treated from days 0 to 270, followed by real domestic wastewater (COD: 225.28 ± 65.98 mg/L) from days 0 to 130. Gas production was continuously monitored throughout. The XGBoost-PSO model outperformed the standard XGBoost algorithm in both the training and testing phases. For biogas prediction during training, XGBoost-PSO achieved an RMSE of 0.0405, an MAE of 0.0225, and an R of 0.9832, whereas for methane, the values were an RMSE of 0.0257, an MAE of 0.0175, and an R of 0.9942. The testing results further confirmed the model's robustness, with RMSE, MAE, and R values of 0.1017, 0.0676, and 0.9404 for biogas and 0.0694, 0.0519, and 0.9717 for methane, respectively. These findings highlight the potential of integrating artificial intelligence-driven approaches to optimize bioenergy recovery in wastewater treatment systems.

摘要

本研究旨在利用先进的机器学习模型——极端梯度提升(XGBoost)及其与粒子群优化相结合的杂交形式(XGBoost-PSO),优化上流式厌氧污泥床反应器处理生活污水时的沼气和甲烷产量。关键操作变量包括时间、流量、化学需氧量(COD)、pH值、挥发性脂肪酸、总悬浮固体、水力停留时间、碱度和有机负荷率。用于训练和验证预测模型的经验数据来自对实验室制备的低强度合成废水和实际城市污水样本的连续处理。数据收集自两个处理阶段:第0至270天处理合成废水(COD:335.45±28.32mg/L),随后第0至130天处理实际生活污水(COD:225.28±65.98mg/L)。在此期间持续监测气体产量。在训练和测试阶段,XGBoost-PSO模型均优于标准XGBoost算法。在训练期间进行沼气预测时,XGBoost-PSO的均方根误差(RMSE)为0.0405,平均绝对误差(MAE)为0.0225,相关系数(R)为0.9832;而对于甲烷,相应的值分别为RMSE为0.0257,MAE为0.0175,R为0.9942。测试结果进一步证实了该模型的稳健性,沼气的RMSE、MAE和R值分别为0.1017、0.0676和0.9404,甲烷的分别为0.0694、0.0519和0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验