Suppr超能文献

机器学习在厌氧消化中的应用:前景与挑战。

Application of machine learning in anaerobic digestion: Perspectives and challenges.

作者信息

Andrade Cruz Ianny, Chuenchart Wachiranon, Long Fei, Surendra K C, Renata Santos Andrade Larissa, Bilal Muhammad, Liu Hong, Tavares Figueiredo Renan, Khanal Samir Kumar, Fernando Romanholo Ferreira Luiz

机构信息

Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, SE, Brazil.

Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, 2540 Dole Street, Honolulu, HI 96822, USA; Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA.

出版信息

Bioresour Technol. 2022 Feb;345:126433. doi: 10.1016/j.biortech.2021.126433. Epub 2021 Nov 27.

Abstract

Anaerobic digestion (AD) is widely adopted for remediating diverse organic wastes with simultaneous production of renewable energy and nutrient-rich digestate. AD process, however, suffers from instability, thereby adversely affecting biogas production. There have been significant efforts in developing strategies to control the AD process to maintain process stability and predict AD performance. Among these strategies, machine learning (ML) has gained significant interest in recent years in AD process optimization, prediction of uncertain parameters, detection of perturbations, and real-time monitoring. ML uses inductive inference to generalize correlations between input and output data, subsequently used to make informed decisions in new circumstances. This review aims to critically examine ML as applied to the AD process and provides an in-depth assessment of important algorithms (ANN, ANFIS, SVM, RF, GA, and PSO) and their applications in AD modeling. The review also outlines some challenges and perspectives of ML, and highlights future research directions.

摘要

厌氧消化(AD)被广泛用于修复各种有机废物,同时产生可再生能源和营养丰富的消化产物。然而,AD过程存在不稳定性,从而对沼气生产产生不利影响。在开发控制AD过程以维持过程稳定性和预测AD性能的策略方面已经做出了重大努力。在这些策略中,机器学习(ML)近年来在AD过程优化、不确定参数预测、扰动检测和实时监测方面引起了极大的兴趣。ML使用归纳推理来概括输入和输出数据之间的相关性,随后用于在新情况下做出明智的决策。本综述旨在批判性地研究应用于AD过程的ML,并对重要算法(人工神经网络、自适应神经模糊推理系统、支持向量机、随机森林、遗传算法和粒子群优化)及其在AD建模中的应用进行深入评估。该综述还概述了ML的一些挑战和前景,并突出了未来的研究方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验