Suppr超能文献

设计用于将CO光还原为乙烯的多金属位点纳米片催化剂。

Designing multi-metal-site nanosheet catalysts for CO photoreduction to ethylene.

作者信息

Li Xiaodong, Li Li, Liu Xiaohui, Xu Jiaqi, Chu Xingyuan, Chen Guangbo, Li Dongqi, Wang Mingchao, Wang Xia, Naisa Chandrasekhar, Gao Jing, Sun Yongfu, Grätzel Michael, Feng Xinliang

机构信息

Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, Germany.

Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, P. R. China.

出版信息

Nat Commun. 2025 Jul 15;16(1):6500. doi: 10.1038/s41467-025-61850-7.

Abstract

Catalysts featuring multiple active sites hold significant potential for CO photoconversion to multi-carbon products. However, multi-metal-site catalysts typically face challenges with low yields and selectivity for ethylene production, with a lack of definitive design guidelines. Here we show that Bader charge can serve as a critical descriptor for delineating the structure-activity relationship of kesterite-like nanosheets in the reduction of CO to ethylene. We propose the Bader-Regulate-Performance principle - apposite Bader charge can provide a moderate energy barrier for intermediate adsorption and C-C coupling simultaneously, thus promoting the performance for ethylene generation. Among the predicted multi-metal-site nanosheets, the CuZnSnS, with the appropriate Bader charge, achieves a high ethylene yield of 25.16 µmol g h with electron selectivity of 72.4% under visible light irradiation, surpassing those of reported photocatalysts under similar catalytic conditions. Our findings provide crucial insights into the design of efficient catalysts for photocatalytic CO conversion to multi-carbon products.

摘要

具有多个活性位点的催化剂在将CO光催化转化为多碳产物方面具有巨大潜力。然而,多金属位点催化剂通常面临乙烯产量低和选择性差的挑战,且缺乏明确的设计指导原则。在此,我们表明巴德电荷可作为一个关键描述符,用于描绘类锌黄锡矿型纳米片在将CO还原为乙烯过程中的结构-活性关系。我们提出了巴德调控性能原理——合适的巴德电荷能够同时为中间体吸附和C-C偶联提供适度的能垒,从而提升乙烯生成性能。在预测的多金属位点纳米片中,具有合适巴德电荷的CuZnSnS在可见光照射下实现了25.16 μmol g⁻¹ h⁻¹的高乙烯产量和72.4%的电子选择性,超过了在类似催化条件下报道的光催化剂。我们的研究结果为设计用于光催化CO转化为多碳产物的高效催化剂提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aab/12259931/a824770335c1/41467_2025_61850_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验