College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China.
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
Nat Commun. 2023 Mar 9;14(1):1298. doi: 10.1038/s41467-023-36926-x.
Electrochemical CO reduction (COR) to ethylene and ethanol enables the long-term storage of renewable electricity in valuable multi-carbon (C) chemicals. However, carbon-carbon (C-C) coupling, the rate-determining step in COR to C conversion, has low efficiency and poor stability, especially in acid conditions. Here we find that, through alloying strategies, neighbouring binary sites enable asymmetric CO binding energies to promote CO-to-C electroreduction beyond the scaling-relation-determined activity limits on single-metal surfaces. We fabricate experimentally a series of Zn incorporated Cu catalysts that show increased asymmetric CO* binding and surface CO* coverage for fast C-C coupling and the consequent hydrogenation under electrochemical reduction conditions. Further optimization of the reaction environment at nanointerfaces suppresses hydrogen evolution and improves CO utilization under acidic conditions. We achieve, as a result, a high 31 ± 2% single-pass CO-to-C yield in a mild-acid pH 4 electrolyte with >80% single-pass CO utilization efficiency. In a single COR flow cell electrolyzer, we realize a combined performance of 91 ± 2% C Faradaic efficiency with notable 73 ± 2% ethylene Faradaic efficiency, 31 ± 2% full-cell C energy efficiency, and 24 ± 1% single-pass CO conversion at a commercially relevant current density of 150 mA cm over 150 h.
电化学 CO 还原(COR)为乙烯和乙醇,使得可再生电力可以长期储存于有价值的多碳(C)化学品中。然而,COR 向 C 转化的速率决定步骤——碳-碳(C-C)偶联,其效率低且稳定性差,尤其是在酸性条件下。在此,我们发现,通过合金化策略,相邻二元位可提供不对称 CO 结合能,从而在单金属表面的标度关系确定的活性限制之外,促进 CO 向 C 的电还原。我们通过实验制备了一系列 Zn 掺杂的 Cu 催化剂,其表现出增强的不对称 CO结合和表面 CO覆盖度,从而实现快速 C-C 偶联以及随后在电化学还原条件下的加氢。进一步优化纳米界面处的反应环境可抑制析氢反应并提高酸性条件下的 CO 利用率。结果,在温和酸性 pH 4 电解质中,我们实现了 31±2%的单程 CO 到 C 的高收率,具有 >80%的单程 CO 利用率。在单个 COR 流动电池电解槽中,我们实现了 91±2%的 C 法拉第效率,显著的 73±2%的乙烯法拉第效率,31±2%的全电池 C 能量效率,以及在 150 mA cm 的商业相关电流密度下,经过 150 h 后,单程 CO 转化率为 24±1%。