Suppr超能文献

利用混合变压器-卷积神经网络的人工智能驱动智能农业用于可持续农业中的实时病害检测。

AI-driven smart agriculture using hybrid transformer-CNN for real time disease detection in sustainable farming.

作者信息

Zeng Zhuo, Mahmood Tariq, Wang Yu, Rehman Amjad, Mujahid Muhammad Akram

机构信息

University of Electronic Science and Technology of China, Chengdu, 610054, China.

Artificial Intelligence and Data Analytics (AIDA) Lab, CCIS, Prince Sultan University, Riyadh, 11586, Saudi Arabia.

出版信息

Sci Rep. 2025 Jul 14;15(1):25408. doi: 10.1038/s41598-025-10537-6.

Abstract

Plant diseases pose a significant threat to global food security, with severe implications for agricultural productivity. Early and accurate detection of these diseases is crucial, yet it remains a challenging task, significantly impacting crop yields and food supply chains. Despite the progress in artificial intelligence, particularly deep learning, challenges persist in real-world applications due to environmental noise, varying light conditions, and other complicating factors that hinder detection accuracy. This study introduces the AttCM-Alex model, a novel deep-learning framework designed to boost the detection and classification of plant diseases under challenging environmental conditions. By integrating convolutional operations with self-attention mechanisms, AttCM-Alex effectively addresses the variability in light intensity and image noise, ensuring robust performance. To simulate practical agricultural scenarios, the study employs bilinear interpolation for image dimension adjustment and introduces Salt-and-Pepper noise. Additionally, the model's robustness was evaluated by varying image brightness levels by ±10%, ±20%, and ±30%. Experimental results demonstrate that AttCM-Alex significantly outperforms traditional models, particularly in scenarios involving fluctuating light conditions and noise interference. The model achieved a peak detection accuracy of 0.97 with a 30% increase in image brightness and maintained an accuracy of 0.93 even with a 30% decrease in brightness, highlighting its robustness and reliability. The findings affirm the AttCM-Alex model as a powerful tool for real-world agricultural applications, capable of enhancing disease detection systems' accuracy and efficiency. This advancement not only supports better crop management practices but also contributes to sustainable agriculture and global food security.

摘要

植物病害对全球粮食安全构成重大威胁,对农业生产力产生严重影响。尽早准确检测这些病害至关重要,但这仍是一项具有挑战性的任务,会对作物产量和食品供应链产生重大影响。尽管人工智能尤其是深度学习取得了进展,但由于环境噪声、光照条件变化以及其他阻碍检测准确性的复杂因素,在实际应用中挑战依然存在。本研究介绍了AttCM-Alex模型,这是一种新颖的深度学习框架,旨在提高在具有挑战性的环境条件下对植物病害的检测和分类能力。通过将卷积运算与自注意力机制相结合,AttCM-Alex有效解决了光照强度和图像噪声的变化问题,确保了稳健的性能。为了模拟实际农业场景,该研究采用双线性插值进行图像尺寸调整并引入椒盐噪声。此外,通过将图像亮度水平分别改变±10%、±20%和±30%来评估模型的稳健性。实验结果表明,AttCM-Alex显著优于传统模型,特别是在涉及光照条件波动和噪声干扰的场景中。该模型在图像亮度增加30%时达到了0.97的峰值检测准确率,即使在亮度降低30%时仍保持0.93的准确率,突出了其稳健性和可靠性。研究结果证实AttCM-Alex模型是实际农业应用中的强大工具,能够提高病害检测系统的准确性和效率。这一进展不仅有助于更好的作物管理实践,还对可持续农业和全球粮食安全做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3254/12259923/e2d27cf2852b/41598_2025_10537_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验