Suppr超能文献

使用定制深度学习模型检测棉花作物病害

Detection of cotton crops diseases using customized deep learning model.

作者信息

Faisal Hafiz Muhammad, Aqib Muhammad, Rehman Saif Ur, Mahmood Khalid, Obregon Silvia Aparicio, Iglesias Rubén Calderón, Ashraf Imran

机构信息

University Institute of Information Technology (UIIT), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan.

Institute of Computational Intelligence, Faculty of Computing, Gomal University, D.I. Khan, 29220, Pakistan.

出版信息

Sci Rep. 2025 Mar 28;15(1):10766. doi: 10.1038/s41598-025-94636-4.

Abstract

The agricultural industry is experiencing revolutionary changes through the latest advances in artificial intelligence and deep learning-based technologies. These powerful tools are being used for a variety of tasks including crop yield estimation, crop maturity assessment, and disease detection. The cotton crop is an essential source of revenue for many countries highlighting the need to protect it from deadly diseases that can drastically reduce yields. Early and accurate disease detection is quite crucial for preventing economic losses in the agricultural sector. Thanks to deep learning algorithms, researchers have developed innovative disease detection approaches that can help safeguard the cotton crop and promote economic growth. This study presents dissimilar state-of-the-art deep learning models for disease recognition including VGG16, DenseNet, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet models. For this purpose, real cotton disease data is collected from fields and preprocessed using different well-known techniques before using as input to deep learning models. Experimental analysis reveals that the ResNet152 model outperforms all other deep learning models, making it a practical and efficient approach for cotton disease recognition. By harnessing the power of deep learning and artificial intelligence, we can help protect the cotton crop and ensure a prosperous future for the agricultural sector.

摘要

通过基于人工智能和深度学习的最新技术进展,农业产业正在经历变革性变化。这些强大的工具被用于各种任务,包括作物产量估计、作物成熟度评估和疾病检测。棉花作物是许多国家重要的收入来源,这凸显了保护其免受可能大幅降低产量的致命疾病侵害的必要性。早期和准确的疾病检测对于防止农业部门的经济损失至关重要。得益于深度学习算法,研究人员开发了创新的疾病检测方法,有助于保护棉花作物并促进经济增长。本研究展示了用于疾病识别的不同的先进深度学习模型,包括VGG16、DenseNet、EfficientNet、InceptionV3、MobileNet、NasNet和ResNet模型。为此,从田间收集真实的棉花疾病数据,并在用作深度学习模型的输入之前,使用不同的知名技术进行预处理。实验分析表明,ResNet152模型优于所有其他深度学习模型,使其成为棉花疾病识别的实用且高效的方法。通过利用深度学习和人工智能的力量,我们可以帮助保护棉花作物,并确保农业部门的繁荣未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2fb/11953249/5abdbb3209af/41598_2025_94636_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验