Suppr超能文献

基于反向传播神经网络和微分方程的混凝土裂缝开度预测

Concrete crack opening forecasting by back propagation neural network and differential equation.

作者信息

Sun Feifei, Xia Zhonghua, Feng Weiqian, Zhu Xinhua, Xie Jinping, Yu Yu, Huang Lvlong, Sheng Dong

机构信息

China Water Resources Beifang Investigation, Design and Research Co., Ltd., 60 Dongting Road, Hexi District, Tianjin, 300222, China.

Tianjin Water Resources Research Institute, 60 Youyi Road, Hexi District, Tianjin, 300222, China.

出版信息

Sci Rep. 2025 Jul 15;15(1):25452. doi: 10.1038/s41598-025-11216-2.

Abstract

Concrete crack opening (CCO) is of great importance to hydraulic engineering maintenance. A forecast method is put forward combining back propagation neural network (BPNN) and differential equation (DE) for daily CCO modeling and was applied to Wangqingtuo Reservoir, in the northern semiarid region of China and the contribution of the DE was assessed by using BPNN model as a contrast. First, it is made up of BPNN and DE calibrations: (1) use historical data to calibrate BPNN models and obtain residuals; (2) use the particle swarm optimization to calibrate coefficients of the DE. The periodicity and time delay of air temperature is expressed by the DE well. Second, important results were found by field application: (1) the sole BPNN models can provide reasonable predictions; (2) better prediction can be achieved based on BPNN-DE-2TD by increasing KGE, 12% for JB-1, 37% for JB-3, and 6% for JB-7; (3) it is indicated that the addition of DE can improve the modeling on the role of air temperature under seasonal and linear trend, while BPNN part can express the nonlinear role of water level and precipitation well, confirmed by Fourier amplitude sensitivity test sensitivity and Shapley Additive exPlanations analysis. This study could provide useful insights into further forecasting of CCO under this forecast method in the world.

摘要

混凝土裂缝开度(CCO)对水利工程维护至关重要。提出了一种结合反向传播神经网络(BPNN)和微分方程(DE)的预测方法用于每日CCO建模,并将其应用于中国北方半干旱地区的王庆坨水库,以BPNN模型作为对比评估DE的贡献。首先,它由BPNN和DE校准组成:(1)使用历史数据校准BPNN模型并获得残差;(2)使用粒子群优化算法校准DE的系数。DE能很好地表达气温的周期性和时间延迟。其次,通过现场应用得到了重要结果:(1)单一的BPNN模型可以提供合理的预测;(2)基于BPNN-DE-2TD,通过提高KGE可以实现更好的预测,JB-1提高了12%,JB-3提高了37%,JB-7提高了6%;(3)通过傅里叶振幅敏感性测试和Shapley附加解释分析证实,添加DE可以改善对季节和线性趋势下气温作用的建模,而BPNN部分可以很好地表达水位和降水的非线性作用。本研究可为世界范围内基于该预测方法的CCO进一步预测提供有益的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c4/12260097/3e1d40da6894/41598_2025_11216_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验